cover
Contact Name
Sri Mulyaningsih
Contact Email
sri_m@akprind.ac.id
Phone
+6222-7213793
Journal Mail Official
ijog@bgl.esdm.go.id
Editorial Address
Jl. Diponegoro No. 57 Bandung
Location
Unknown,
Unknown
INDONESIA
Indonesian Journal on Geoscience
ISSN : 23559314     EISSN : 23559306     DOI : https://doi.org/10.17014/ijog.3.2.77-94
Core Subject : Science,
The spirit to improve the journal to be more credible is increasing, and in 2012 it invited earth scientists in East and Southeast Asia as well as some western countries to join the journal for the editor positions in the Indonesia Journal of Geology. This is also to realize our present goal to internationalize the journal, The Indonesian Journal on Geoscience, which is open for papers of geology, geophysics, geochemistry, geodetics, geography, and soil science. This new born journal is expected to be published three times a year. As an international publication, of course it must all be written in an international language, in this case English. This adds difficulties to the effort to obtain good papers in English to publish although the credit points that an author will get are much higher. This Journal publishes 3 numbers per year at least 15 articles. It is a challenge for the management of the journal to remain survive and at the same time continuously maintain its quality and credibility in spite of those various constraints. Fortunately, this effort is strongly supported by the Geological Agency of Indonesia, as the publisher and which financially bear the journal. Last but not least the journal is also managed by senior geologist of various subdisciplines from various countries who are responsible for its quality.
Articles 323 Documents
Indikasi munculnya Kubah Lava berdasarkan Rekaman Seismik Wittiri, S. R.
Indonesian Journal on Geoscience Vol 4, No 2 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.4.2.93-101

Abstract

http://dx.doi.org/10.17014/ijog.vol4no2.20092In the last two decades, there are six volcanoes erupting and are ended up with the growth of lava dome at the crater. Among them, formerly there are three volcanoes that have crater lakes. For the intermediate magma, like most Indonesian volcanoes, the lava dome formation is a usual phenomenon. The interesting symptom is indicated by the seismic waves. They are supposed to relate to the magma breakthrough into the surface. The seismic phenomena of those volcanoes have a similarity, which can be estimated that the  mechanism of rock fracturing is relatively similar.  
Penentuan Peringkat Bahaya Tsunami dengan Metode Analytical Hierarchy Process (Studi kasus: Wilayah Pesisir Kabupaten Sukabumi) Oktariadi, Oki
Indonesian Journal on Geoscience Vol 4, No 2 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.4.2.103-116

Abstract

http://dx.doi.org/10.17014/ijog.vol4no2.20093Hierarchy structure of a tsunami risk encompasses the study of hazard, vulnerability, and capac- ity factors. The focus of this research is hazard factors, with indicators comprise beach slope, beach coarseness (surface material), run up, and earthquake intensity. Computation method used in the deci- sion system is the Analytical Hierarchy Process (AHP). The AHP method is to determine the weight of indicators and matrices of hazard factor hierarchy. The final total score of the hazard factors will be useful for tsunami hazard mapping through a geographic information system (GIS). It consists of four hierarchies of  tsunami hazard that are high, middle, low, and safe levels. The coastal regions in Sukabumi having high tsunami disaster risk are the Gulf of Pelabuhanratu, Ciemas plain (Gulf of Ciletuh), Ujung Genteng Cape, and some parts of coastal plain areas in Sim- penan. Those having middle tsunami disaster risk are coastal area of Surade, Cibitung, Tegalbuleud, whereas those having low tsunami disaster risk are Cisolok cliff, Simpenan, and Ciemas cliff area. The other coastal zones are included into a safe area.  
Geochemical Signature of Mesozoic Volcanic and Granitic Rocks in Madina Regency Area, North Sumatra, Indonesia, and its Tectonic Implication Zulkarnain, Iskandar
Indonesian Journal on Geoscience Vol 4, No 2 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.4.2.117-131

Abstract

http://dx.doi.org/10.17014/ijog.vol4no2.20094Five samples consisting of two Permian-Triassic basalts, two Triassic-Jurassic granitic rocks, and a Miocene andesite were collected from the Madina Regency area in North Sumatra that is regionally situated on the West Sumatra Block. Previous authors have proposed three different scenarios for the geological setting of West Sumatra Permian Plutonic-Volcanic Belt, namely an island-arc, subduction related continental margin arc, and continental break-up. Petrographic analysis of the Mesozoic basaltic samples indicates that they are island-arcs in origin; however their trace element spider diagram patterns (Rock/MORB ratio) also show the character of back-arc marginal basin, besides the island-arc. Furthermore, their REE spider diagram patterns (Rock/ Chondrite ratio) clearly reveal that they were actually generated in a back-arc marginal basin tectonic setting. Meanwhile, the two Mesozoic granitic rocks and the Miocene andesite reflect the character of an active continental margin. Their spider diagram patterns show a significant enrichment on incompat- ible elements, usually derived from fluids of the subducted slab beneath the subduction zone. The high enrichment on Th makes their plots on Ta/Yb versus Th/Yb diagram are shifted to outside the active continental margin field. Although the volcanic-plutonic products represent different ages, their La/Ce ratio leads to a probability that they have been derived from the same magma sources. This study offers another different scenario for the geological setting of West Sumatra Permian Plutonic-Volcanic Belt, where the magmatic activities started in a back-arc marginal basin tectonic setting during the Permian-Triassic time and changed to an active continental margin during Triassic to Miocene. The data are collected through petrographic and chemical analyses for major, trace, and REE includ- ing literature studies.  
Karakteristik Batubara dan Batuan Sedimen Pembawanya, Formasi Talangakar, di daerah Lampung Tengah Kusnama, Kusnama; Panggabean, Hermes
Indonesian Journal on Geoscience Vol 4, No 2 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.4.2.133-144

Abstract

http://dx.doi.org/10.17014/ijog.vol4no2.20095The rock succession of coal bearing formation, situated in Lampung Tengah, occupies the basinal margin or the western part of South Sumatra Basin. Physiographically, the rock succession lies in the Palembang Zone which directly contacts with the southernmost Barisan Mountain Zone. The rock facies consists of conglomerate, and conglomeratic and quartz sandstones in the lower part, whilst the upper part comprises shale, claystone, mudstone, siltstone, and coal with coally shale and shaly coal intercalations. The rock facies of coal bearing unit is strongly believed to be part of the Oligo - Miocene Talangakar Formation deposited in a fluvial – paralic environment which further up section, it turns to be a sub-littoral deposit. The depositional environment strongly affected the coal characteristics and type. Stratigraphically, the rock unit is conformably overlain by the Early - Middle Miocene limestone unit and is intruded by the Middle – Late Miocene granodiorite. The basement of the Tertiary rock succession is metamorphics of the Gunungkasih Complex and the Cretaceous granitic rock. The normal fault controlling the area studied has a northwest - southeast direction and it caused the dip of coal trending north - east direction of 15º - 23º. The coal of the research area was deposited in wet forest swamp environment within a high to medium subsidence level. The coal is grouped to a high to low volatile bituminuous rank, included to a mature category.    
Evolusi Bentuklahan daerah Manado dan sekitarnya, Sulawesi Utara Poedjoprajitno, S.
Indonesian Journal on Geoscience Vol 4, No 2 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.4.2.145-155

Abstract

http://dx.doi.org/10.17014/ijog.vol4no2.20096Landform evolusion in Manado region has been strongly influenced by tectonic activities beside marine and volcanic ones. Based on surface and subsurface (shallow drilling) geological data, landform evolution of the studied areas can be grouped into four morphological environment units consisting of nine environment sets of morphology, these are: ( a). flood basin, ( b). tidal beach, (c).swamp, (d). river channel, (e).volcanic eruption, (f). flood basin influenced by water, (g).coastal/shore, (h). near shore, and (i). offshore. Collumnar analyses on nine drilling data show that the landform evolution history in the Manado region has undergone more than one tectonic event and three eruptions, proved by the presence of discontinuities on morphological environment units and composition, vertically.  
Analisis stratigrafi awal kegiatan Gunung Api Gajahdangak di daerah Bulu, Sukoharjo; Implikasinya terhadap stratigrafi batuan gunung api di Pegunungan Selatan, Jawa Tengah Hartono, Hill Gendoet; Bronto, Sutikno
Indonesian Journal on Geoscience Vol 4, No 3 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.4.3.157-165

Abstract

http://dx.doi.org/10.17014/ijog.vol4no3.20091Generally, Tertiary volcanisms in the Southern Mountains, Central Jawa were started with the formation of pillow lavas having basalt to basaltic andesite in composition. This initial stage volcanism developed into a  construction period of composite volcanoes that consist of alternating basaltic to andesitic lava flows, breccias, and tuffs. The construction period could be followed by a destructive phase, producing pumice-rich pyroclastic breccias, lapillistones, and tuffs of high silica andesite to dacite, or even rhyolite in composition. A stratigraphic measuring section at Bulu area, Sukoharjo Regency, presents an alternat- ing fine-grained andesitic volcaniclastic material and some limestones, with the total thickness is 143.33 m. The thickness of bedded volcaniclastic material tends to be thickening upward from 35 m until 90 m. The grain size of the volcaniclastic material also tends to be coarsening upward from clay size through silt and fine sand to coarse sand and granules. Paleontological analysis on fossils contained in the lime- stone gives an age of Early Miocene (N7 - N9). The volcaniclastic rocks is conformably overlain by the Mandalika Formation, comprising alternating andesitic breccias, lavas, and tuffs. These data imply that the fine-grained volcaniclastic material is an initial product of the construction period of Gajahdangak Volcano in the area, that formed the Mandalika Formation. This Formation is overlain by the Semilir Formation, composed of pumice-rich pyroclastic breccias and tuffs with dacitic composition. This as- sociated volcanic rock reflects a product of a caldera explosion or a destructive phase. Based on the characteristics of lithology of volcanic products from the initial stage, to a construction and destruction period, and compiled age data, the Southern Mountains represent formal volcanic rock units that are able to be divided into many formations.  
Karakteristik Batuan Sumber (Source Rock) Hidrokarbon pada Formasi Batuasih di daerah Sukabumi, Jawa Barat Praptisih, Praptisih; Kamtono, Kamtono; Putra, P. S.; Hendrizan, M.
Indonesian Journal on Geoscience Vol 4, No 3 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.4.3.167-175

Abstract

http://dx.doi.org/10.17014/ijog.vol4no3.20092The purpose of the study carried out on the claystone of Batuasih Formation in Sukabumi area is to find out the hidrocarbon potential and its characteristics. The Batuasih Formation, overlying conform- ably the Walat Formation, consists  of claystone, dark gray, shaly, brittle, containing clay ball, calcite veins, with carbonate intercalations. The geochemical analysis conducted on twelve samples shows the TOC values vary between 0.49 – 1.14 % and Tmax of 431 – 434o C. Four samples are categorized to be immature, while the rests are mature. HI values of the Batuasih Formation varying from 77-191 mg HC/ TOC indicate that the samples are of C and CD organic facies. Based on those analyses, the source rock is favourably potential to generate a small quantity of hydrocarbon and gas. The hydrocarbon source rock potential level in the investigation area shows a poor to fair organic richness, and its kerogen is included into types II and III. The source rock quality based on the Hydrogen Index (HI) value tends to be a gas prone. 
Kondisi Permukaan Air Tanah dengan dan tanpa peresapan buatan di daerah Bandung: Hasil Simulasi Numerik Hutasoit, Lambok M.
Indonesian Journal on Geoscience Vol 4, No 3 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.4.3.177-188

Abstract

http://dx.doi.org/10.17014/ijog.vol4no3.20093Significant groundwater level drawdown caused by groundwater abstractions has been reported to occur in Bandung and its surrounding area. One potential method to recover the groundwater condi- tion is artifical recharge, considering high quantity of rainfall in this area. In this research, numerical simulation has been performed in order to predict groundwater condition in the next five years, if: 1) no recovery action is taken (do-nothing) (Scenario 1), and 2) artificial recharge is performed (Scenario 2). Hydrogeological condition reconstruction  required for physical model development  reveals that the main aquifer in the researched area is Cibeureum Formation, which comprises volcanic fans; the main aquitard is Kosambi  Formation, crasisting of lake deposit, whilst the hydrogeologic basement in the research area is the Cikapundung Formation, other Quaternary volcanic rocks, except the Cibeureum Formation, and Tertiary rock units. The recharge area is the areas where the Cibeureum Formation crops out. The result of numerical simulation of Scenario 1 shows that if there is no recovery action taken on the groundwater condition, then in year 2013 the Critical Zone will increase about 116 % and the Damage Zone will increase about 570 %. The result of this scenario also shows that there will be groundwater mining in several areas in the Damage Zone with the total area of 244 km2 or 41 % of the total  confined aquifer area. Result of the numerical simulation of Scenario 2 shows that  the artificial recharge in the above Critical and Damage Zones will effectively recover groundwater condition in year 2013 which means is, the whole area becomes Safe Zone. The amount of the artificial recharge is about 164 million m3/year and it started from year 2009. The artificial recharge means recharge well, surface reservoir, or recharge ditch where the Cibeureum Formation crops out, or injection well where this formation does not crop out.  
Ignimbrite Analyses of Batur Caldera, Bali, based on 14C Dating Sutawidjaja, Igan S.
Indonesian Journal on Geoscience Vol 4, No 3 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.4.3.189-202

Abstract

http://dx.doi.org/10.17014/ijog.vol4no3.20094The Batur Caldera, in the northeastern part of Bali Island, is an elliptical collapse structure 13.8 by 10 km in size and another circular composite collapse structure with a diameter of 7.5 km in its centre. Two stages of the collapse were interrupted by silicic andesite lavas and domes. The first collapse was initiated by the eruption of about 84 km3 of the dacitic "Ubud Ignimbrite", about 29,300 years B.P., which caused a steep-walled depression about 1 km deep. The second ignimbrite was erupted from a large crater about the present lake, and it  produced about 19 km3 of a similar voluminous dacitic ignimbrite, called the "Gunungkawi Ignimbrite" about 20,150 years B.P. This second eruption trig- gered a second collapse, which created the central circular caldera, and formed a basin structure. Both the Ubud and Gunungkawi Ignimbrites consist of a similar dacitic composition, white to red (the most abundant nearly 90 %) and dark grey to black dacitic pumice clasts. The large clasts, up to 20 cm in diameter, are in the non-welded ignimbrite, particularly in the upper part of the Gunungkawi Ignimbrite. The intracaldera ignimbrite, called the "Batur Ignimbrite" about 5 km3  in volume is a densely welded ignimbrite and generally shows typical welded features. The ignimbrite comprises at least five different flow units, separated by thin (15 - 40 cm) welded pumiceous airfall deposits, with flattened pumice clasts. Another large eruption occurred about 5,500 years B.P., producing around 0.09 km3  andesitic ignimbrite. This was initiated by phreatomagmatic eruptions, indicated by thick phreatomagmatic and surge deposits, underlying the ignimbrite. The caldera and its vicinity are partly filled, and variably mantled by later eruptive products of dacitic and andesitic phreatomagmatic and airfall deposits.  
Pendolomitan Batugamping Formasi Rajamandala di Lintasan Gua Pawon, Bandung Barat Maryanto, Sigit
Indonesian Journal on Geoscience Vol 4, No 3 (2009)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.4.3.203-213

Abstract

http://dx.doi.org/10.17014/ijog.vol4no3.20095Diagenetic process records could be observed based on the petrography and XRD mineralogy labo- ratory analyses from thirty-two samples of limestone taken from the Rajamandala Formation at Pawon Cave Section, West Bandung. These laboratory analyses show that the rocks have partially been affected by a dolomitization. The dolomitization recorded at the limestone is a fabric selective dolomitization of the rock matrix, continued to the whole components of the limestone. The dolomite crystals are generally idiotopic to xenotopic mosaic rhombohedral in shapes with fine to moderate crystal sizes. Dolomite mainly consists of magnesium ion initiated from water formation trapped soon after the rock deposited. The middle part of the Rajamandala Formation, which is commonly affected by dolomitization is generally associated with meteoric water dissolution and creates several caves.  

Page 8 of 33 | Total Record : 323