International Journal of Robotics and Control Systems
International Journal of Robotics and Control Systems is open access and peer-reviewed international journal that invited academicians (students and lecturers), researchers, scientists, and engineers to exchange and disseminate their work, development, and contribution in the area of robotics and control technology systems experts. Its scope includes Industrial Robots, Humanoid Robot, Flying Robot, Mobile Robot, Proportional-Integral-Derivative (PID) Controller, Feedback Control, Linear Control (Compensator, State Feedback, Servo State Feedback, Observer, etc.), Nonlinear Control (Feedback Linearization, Sliding Mode Controller, Backstepping, etc.), Robust Control, Adaptive Control (Model Reference Adaptive Control, etc.), Geometry Control, Intelligent Control (Fuzzy Logic Controller (FLC), Neural Network Control), Power Electronic Control, Artificial Intelligence, Embedded Systems, Internet of Things (IoT) in Control and Robot, Network Control System, Controller Optimization (Linear Quadratic Regulator (LQR), Coefficient Diagram Method, Metaheuristic Algorithm, etc.), Modelling and Identification System.
Articles
13 Documents
Search results for
, issue
"Vol 1, No 3 (2021)"
:
13 Documents
clear
Synchronization and Chaos Control Using a Single Controller of Five Dimensional Autonomous Homopolar Disc Dynamo
Lucienne Makouo;
Alex Stephane Kemnang Tsafack;
Marceline Motchongom Tingue;
André Rodrigue Tchamda;
Sifeu Takougang Kingni
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i3.380
The electronic implementation, synchronization, and control of hyperchaos in a five-dimensional (5D) autonomous homopolar disc dynamo are investigated in this paper. The hyperchaotic behavior is found numerically using phase portraits and time series in 5D autonomous homopolar disc dynamo is ascertained on Orcad-PSpice software. The synchronization of the unidirectional coupled 5D hyperchaotic system is also studied by using the feedback control method. Finally, hyperchaos found in 5D autonomous homopolar disc dynamo is suppressed thanks to the designed single feedback. Numerical simulations and electronic implementation reveal the effectiveness of the single proposed control.
PID-Type Iterative Learning Control for Output Tracking Gearing Transmission Systems
Luong Thuy Anh;
Tran Thi Thanh Nga;
Vu Van Hoc
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i3.395
In this paper, we propose a modified version of the Proportional Integral Derivative (PID)-type iterative learning algorithm. It is very simple to implement on a digital control device for tracking control a continuous-time system. Matlab software is used to model and simulate control algorithms. The simulative application of it to control a gearing transmission system, such that its output response follows the desired trajectory, is then carried out computationally. Obtained studying results proves that this proposed iterative learning algorithm has provided a good output tracking behavior as expected and which is robust in the sense of reducing external disturbance effects.
An Adaptive Sliding Mode Control for Single Machine Infinite Bus System under Unknown Uncertainties
Magdi Sadek Mahmoud;
Ali Alameer;
Mutaz M. Hamdan
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i3.351
The inherent uncertainties in a Single Machine Infinite Bus System (SMIBS) are governed by unmodeled dynamics or large disturbances such as the system's faults. The existence of these uncertainties demands robust controllers to guarantee the system's asymptotic stability under such exacting conditions. In this work, we propose an Adaptive Sliding Mode Control (ASMC) design implemented on a fifth-order nonlinear SMIBS to handle those uncertainties without prior knowledge about its upper bounds. We develop the ASMC with gains of two nested adaptive layers to asymptotically stabilize the system's internal states, the machine's terminal voltage, and power angle within a region of unknown bounded uncertainties while mitigating the chattering phenomena associated with conventional Sliding Mode Control (SMC). To verify the design's effectiveness and prove the conducted Lyapunov theoretical stability analysis, we simulate the occurrence of a large disturbance represented by a 3-phase fault at the system's universal bus. The results show that the ASMC can successfully achieve asymptotic stable output errors and stabilizing the SMIBS internal states after the clearance of the fault. Moreover, the ASMC noticeably outperforms the SMC in chattering mitigation, where the ASMC's signal is significantly smoother than that of the SMC.
Review of Aerial Manipulator and its Control
Xu Wei-hong;
Cao Li-jia;
Zhong Chun-lai
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i3.363
The aerial manipulator is a new type of aerial robot with active operation capability, which is composed of a rotary-wing drone and an actuator. Although aerial manipulation has greatly increased the scope of robot operations, the research on aerial manipulators also faces many difficulties, such as the selection of aerial platforms and actuators, system modeling and control, etc. This article attempts to collect the research team’s Achievements in the field of aerial robotic arms. The main results of the aerial manipulator system and corresponding dynamic modeling and control are reviewed, and its problems are summarized and prospected.
Synchronization of Active Power Filter under Distorted Grid Conditions
Ikram Ullah
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i3.464
Advancement in technology has resulted in increased use of electrical energy. The trend of using energy-saving appliances is also increased considerably. Harmonic currents have been increased in power systems due to the large-scale use of nonlinear loads. Shunt Active Power Filter (SAPF) is the most widely used technique for the compensation of current harmonics. Under adverse grid conditions performance of SAPF is affected badly. In this paper, a modified synchronous reference frame theory is proposed for current reference generation by incorporating an advanced phase-locked loop technique for the estimation of frequency and phase. The proposed approach results in an accurate extraction of reference current in the presence of various grid disturbances. Matlab/Simulink environment is used for evaluating the performance. The results achieved show excellent performance of the proposed technique in terms of reducing harmonics distortion and dynamic response. The total harmonics distortion of the compensated source current is reduced to a value well within the limits of the IEEE-519 standard.
Enhanced Low Voltage Ride Through Capability for Grid Connected Wind Energy Conversion System
Mohammed Alsumiri;
Raed Althomali
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i3.441
It is obvious that the current era has received much attention in the fields of science and technology, besides the continuous endeavor to provide environmentally friendly and resource-saving alternatives for conventional energy conversion systems. The rapid development of Wind Energy Conversion Systems (WECS) has made Permanent Magnet Synchronous Generator (PMSG) a primer choice because of its advantages. The current trend on WECS necessitates wind turbines to maintain continuous operation during voltage drops, which is referred to as Low Voltage Ride Through (LVRT). The PMSG control technique is a widely used approach for improving conversion efficiency as well as LVRT capability. This paper provides LVRT and power enhancement for grid-connected PMSG based WECS using control techniques. The LVRT capability has been investigated by using PI and Residue controllers. The simulation results show improved active power delivery and better LVRT capability during voltage dips when the Residue controller is implemented.
Stirring System Design for Automatic Coffee Maker Using OMRON PLC and PID Control
Ashadi Setiawan;
Alfian Ma'arif
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i3.457
The implementation of the use of PLC in this study was designed for a small scale in the process of stirring coffee drinks at a speed of 600 RPM. To get a stable speed so that the water does not overflow, a control system is needed. To get optimal results, a system design that can control the stirring speed is arranged automatically using a Programmable Logic Controller (PLC). This system is designed using a rotary encoder sensor C38S6G5-600B-G24N as a speed reader obtained from the movement of the motor, DC Motor JGA25-370 12V as an actuator or stirrer. PLC OMRON CP1E-NA20DR-A is used as a motor speed control device using the Proportional Integral Derivative (PID) algorithm to control the system according to the setpoint entered. The motor speed control system with the PID algorithm shows a system response that works well according to the researchers' expectations. The response of the system obtained is fast enough to achieve a stable speed with a small overshoot value. Thus this system was successfully designed to control the stirring process of coffee drinks automatically and produce stable stirring by giving a set point of 600 RPM at the parameter constant Proportional band is 720%; Integral time is 1.6s; and Derivative time is 0.2s with a rise time value is 1.3s; settling time is 11s; overshoot is 1.1%; and steady-state error is 0.5%.
Robust Fuzzy Adaptive Control with MRAC Configuration for a Class of Fractional Order Uncertain Linear Systems
Bachir Bourouba;
Samir Ladaci;
Rachid Illoul
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i3.426
This paper investigates a novel robust fractional adaptive control design for a class of fractional-order uncertain linear systems. Based on the Model Reference Adaptive Control (MRAC) configuration, the objective of the proposed controller is to ensure the output of the controlled plant to track the output of a given reference model system, while maintaining the overall closed-loop stability despite external disturbances and model uncertainties. An adaptive fuzzy logic controller is employed to eliminate unknown dynamics and disturbance. Lyapunov stability analysis demonstrates and verifies the desired fractional adaptive control system stability and tracking performance. Numerical simulation results illustrate the efficiency of the proposed adaptive fuzzy control strategy to deal with uncertain and disturbed fractional-order linear systems.
Continuous Passive Motion Machine for Elbow Rehabilitation
Hamzah Hussein Mohammed Al-Almoodi;
Norsinnira Zainul Azlan;
Ifrah Shahdad;
Norhaslinda Kamarudzaman
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i3.446
Continuous Passive Machines (CPM) facilitate patients in eliminating joint stiffness after surgery and lead to a faster and more efficient recovery. However, many previous CPM machined are mechanically complicated, expensive, and lack a user interface. This paper presents a new CPM machine for elbow flexion-extension and forearm pronation-supination. The machine is simple, low-cost, and equipped with Graphical User Interface (GUI). Its mechanism is designed so that it can be used on the left or right arms interchangeably. It is developed using aluminum, perspex, and steel rods. The electrical part of the machine consists of Arduino Uno to drive the motors and a potentiometer to measure the patients’ Range of Motion (ROM). The GUI for setting the exercise parameters and monitoring the patients’ progress has been developed using MATLAB software. The experimental results show that the machine has successfully provided the repetitive desired motions. The machine realizes elbow flexion-extension and forearm pronation-supination movements with 0ᵒ-135ᵒ and 0ᵒ-90ᵒ ranges of motion (ROM), respectively. The machine is also capable of increasing the elbow joint’s ROM by 5ᵒ increments for the therapy. The results show that the machine has the potential to be used in hospitals and rehabilitation centers.
A Multifunction Robot Based on the Slider-Crank Mechanism: Dynamics and Optimal Configuration for Energy Harvesting
Arnaud Notué Kadjie;
E. B. Tchawou Tchuisseu
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31763/ijrcs.v1i3.408
An electromechanical robot based on the modified slider-crank mechanism with a damped spring hung at its plate terminal is investigated. The robot is first used for actuation operation and for energy harvesting purposes thereafter. Mathematical modeling in both cases is proposed. As an actuator, the robot is powered with a DC motor, and the effect of the voltage supply on the whole system dynamics is found out. From the numerical simulation based on the fourth-order Runge-Kutta algorithm, results show various dynamics of the subsystems, including periodicity, multi-periodicity, and chaos as depicted by the bifurcation diagrams. Applications can be found in industrial processes like sieving, shaking, cutting, pushing, crushing, or grinding. Regarding the case of the robot functioning as an energy harvester, two different configurations of the electrical circuit for both single and double loops are set up. The challenge is to determine the best configuration for the high performance of the harvester. It comes from theoretical predictions and experimental data that the efficiency of the robot depends on the range values of the electrical load resistance RL. The double loop circuit is preferable for the low values of RL50 Ohm) while the single loop is convenient for high values of RL ≥ 50 Ohm.