cover
Contact Name
Idral Amri
Contact Email
Jbchees@eng.unri.ac.id
Phone
+6282287838182
Journal Mail Official
Jbchees@eng.unri.ac.id
Editorial Address
Graduate Program of Chemical Engineering Faculty of Engineering Universitas Riau, Pekanbaru, Indonesia, 28293
Location
Kota pekanbaru,
Riau
INDONESIA
Journal of Bioprocess Chemical and Environmental Engineering Science
Published by Universitas Riau
ISSN : 27221334     EISSN : 27211894     DOI : -
Journal of Chemical, Bioprocess and Environmental Engineering Science merupakan Open Access Journal yang menerbitkan naskah dengan topik-topik sebagai berikut: 1) Bioprocess Engineering, 2) Catalytic Reaction Engineering Science, 3) Fundamental of Chemical Engineering and Applied Industry, 4) Industrial Chemical Engineering, 5) Material and Engineering Sciences, 6) Process and Control Engineering, 7) Energy Sciences and Technology, 8) Polymer, Oleo and Petrochemical Technology, 9) Membrane Sciences and Technology, 10) Separation and Purification Technology, 11) Water/Waste Water treatment, 12) Environmental and Safety Technology, 13) Food Processing and Engineering Sciences
Articles 5 Documents
Search results for , issue "Vol 1 No 2 (2020): Journal of Bioprocess, Chemical, and Environmental Engineering" : 5 Documents clear
Optimalisasi Penggunaan Kitosan Limbah Kulit Udang Vannamei sebagai Koagulan dalam Perbaikan Kualitas Air Danau Shabriyani Hatma; Setyawati Yani; A. Suryanto
Journal of Bioprocess, Chemical and Environmental Engineering Science Vol 1 No 2 (2020): Journal of Bioprocess, Chemical, and Environmental Engineering
Publisher : Jurusan Teknik Kimia, Fakultas Teknik, UNRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (332.384 KB) | DOI: 10.31258/jbchees.1.2.17-24

Abstract

The lake in UNHAS is thought to have experienced pollution which causes the water quality to be poor so that it cannot be utilized at all. For that we need a way to improve water quality. In this study, a natural coagulant was used, namely chitosan from Vannamei shrimp shell waste from KIMA which from the past until now has not been optimally managed, so that it is an aspect that also needs attention. The method used was a jar test, through rapid mixing and slow mixing processes with variants of increasing the concentration of chitosan 0.5, 1, 1.5, 2, 2.5 (%) at stirring speed of 100, 300, 500, and 70 rpm. The results of the study, namely the effect of shrimp shell chitosan on lake water quality for TDS testing showed that, the more addition of chitosan which was parallel with the stirring speed, the solid content decreased so that the shrimp shell chitosan as a coagulant was indeed quite good to be used as an alternative to improve lake water quality in reducing solids content. Optimal at a stirring speed of 500 rpm with the addition of the concentration of chitosan as much as 10 ml / 2.5% to the volume of the lake water sample.
Produksi Bioetanol Generasi Kedua dari Pelepah Kelapa Sawit dengan Variasi Pretreatment H2SO4 dan Waktu Fermentasi Idral Amri; Adrianto Ahmad; Rahmah Nabilah
Journal of Bioprocess, Chemical and Environmental Engineering Science Vol 1 No 2 (2020): Journal of Bioprocess, Chemical, and Environmental Engineering
Publisher : Jurusan Teknik Kimia, Fakultas Teknik, UNRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (0.025 KB) | DOI: 10.31258/jbchees.1.2.1-16

Abstract

Indonesia merupakan negara produsen dan eksportir kelapa sawit terbesar di dunia. Seiring semakin luasnya lahan perkebunan sawit, maka semakin banyak industri pengolahan sawit yang mengakibatkan jumlah limbah yang dihasilkan juga besar. Indonesia menghasilkan limbah kelapa sawit sebesar 66.750 juta pelepah atau sekitar 300 juta ton/tahun. Dengan melimpahnya pelepah kelapa sawit dapat dimanfaatkan sebagai sumber energi alternatif terbaru yaitu bioetanol. Tujuan penelitian ini yaitu mensintesis bioetanol dari pelepah sawit, menentukan pengaruh konsentrasi H2SO4 pada proses hidrolisis dan menentukan waktu optimum produksi bioetanol dari bahan baku pelepah kelapa dengan metode separate hydrolysis and fermentation (SHF). Tahapan penelitian ini yaitu pretreatment basa menggunakan larutan KOH yang diperoleh dari ekstrak abu Tandan Kosong Sawit, selanjutnya proses pretreatment oksidatif menggunakan larutan H2O2 3%. Kemudian proses hidrolisis dengan variasi H2SO4 yaitu 1,5 M, 2 M, dan 2,5 M selama 3 jam pada suhu 100oC dan dilanjutkan dengan proses fermentasi untuk menghasilkan bioetanol dengan waktu fermentasi yaitu 24 jam, 48 jam, 72 jam, 96 jam, dan 120 jam . Hasil penelitian menunjukkan bahwa pada proses hidrolisis dihasilkan konsentrasi gula maksimum sebesar 161,98 gr/L. Konsentrasi terbaik H2SO4 pada penelitan ini yaitu 2 M dan waktu fermentasi terbaik 96 jam dengan kadar bioetanol yang diperoleh sebesar 7% atau 55,25 g/L. Kata kunci : bioetanol, fermentasi, hidrolisis, pelepah kelapa sawit, saccharomyces cerevisiae
Pembuatan Briket Kalori Tinggi Menggunakan Limbah Pulp dan Tempurung Kelapa Sebagai Cofiring dengan Campuran Limbah Sludge CPO Sebagai Bahan Perekat Michael Tanuwijaya; Idral Amri; Zultiniar
Journal of Bioprocess, Chemical and Environmental Engineering Science Vol 1 No 2 (2020): Journal of Bioprocess, Chemical, and Environmental Engineering
Publisher : Jurusan Teknik Kimia, Fakultas Teknik, UNRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (165.669 KB) | DOI: 10.31258/jbchees.1.2.25-38

Abstract

Indonesia is one of the largest paper producing and exporting countries in the world. Along with the increase in paper production causes an increase in solid waste originating from the reject pulp. The reject pulp has the potential to produce energy because it still contains high cellulose content of around 85.16% which is able to support the provision of usable and environmentally friendly fuel. The purpose of this study was to use of reject pulp as fuel in the form of briquettes by mixing coconut shell charcoal as cofiring and CPO sludge as an adhesive. The beginning of in this research is pretreatment of raw material samples and quality testing such as coconut shells which go through the authoring process using the torefaction process with temperature variations of 275 ° C and 300 ° C which are then mashed and reject the pulp through a washing and drying process in an oven which is then processed. form into briquettes with a variety of composition of reject pulp and coconut shell charcoal cofiring from 80%: 0%, 20%: 60%, 30%: 50%, 50%: 30%, 60%: 20%, and 0%: 80% , for adhesive 20% while 90%: 0%, 30%: 60%, 40%: 50%, 50%: 40%, 60%: 30%, 70%: 20% and 90%: 0% for adhesive 10 % of the total briquette weight which is ± 2 grams. The briquettes that have been form must qualified to the quality standards of SNI for wood charcoal (No.1 / 6235/2000) where after being tested only a few compositions have qualified the standards, for the reject pulp composition and coconut shell charcoal cofiring from 0:90, 30:60 40:50 with an adhesive composition of 10% and a composition of 0:80, 20:60, 30:50 with an adhesive composition of 20%, with the highest calorific value of 5274 cal/g, moisture content of 5.37%, and ash content of 2.65%.
Optimasi Pembuatan Film Biodegradabel dari Komposit Pati Sagu – MCC yang Dimodifikasi dengan Asam Sitrat Trisuciati Syahwardini; Bahruddin; Ida Zahrina
Journal of Bioprocess, Chemical and Environmental Engineering Science Vol 1 No 2 (2020): Journal of Bioprocess, Chemical, and Environmental Engineering
Publisher : Jurusan Teknik Kimia, Fakultas Teknik, UNRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (200.425 KB) | DOI: 10.31258/jbchees.1.2.39-51

Abstract

Optimization is a way to find variable values that are considered optimal, effective, and efficient to achieve the desired results. The approach that is more often used for optimization problems with multi-variables is the desirability function. The components carried out by the optimization are microcrystalline cellulose (MCC) (x1), citric acid (x2), sorbitol (x3) with the response are Tensile Strength (Y1), Elongation (Y2), Modulus young (Y3), Biodegradability (Y4), and Water Uptake (Y5). Optimization is done by using Design Expert 10.0.1 Software. Through Desirability Function analysis, the optimum treatment composition was obtained at the MCC filler variation of 18% w / w starch, citric acid 3% w / w starch, and sorbitol 33% w / w starch with the optimum response value predicted for tensile strength (Y1) = 11.38 MPa; Elongation (Y2) = 13.54%; Young's modulus (Y3) = 118.05 MPa; Biodegradability (Y4) = 46.89%; and Water Uptake (Y5) = 52.13%. The combined desirability value is 0.551
Prediksi Kesetimbangan Cair-Cair Sistem Pati-PVA-Air dengan metode UNIFAC Lusiana Sri Wahyuni; Bahruddin; Ida Zahrina
Journal of Bioprocess, Chemical and Environmental Engineering Science Vol 1 No 2 (2020): Journal of Bioprocess, Chemical, and Environmental Engineering
Publisher : Jurusan Teknik Kimia, Fakultas Teknik, UNRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (154.155 KB) | DOI: 10.31258/jbchees.1.2.52-62

Abstract

The manufacture of bioplastics by mixing PVA with starch, for example from sago, cassava, sweet potatoes, and potatoes and so on have been widely practiced. However, in some cases, blending of the polymers may not produce the desired properties due to the lack of miscibility between the mixed polymers. So that in making bioplastics a mixture of starch and PVA requires data support of the miscibility of raw materials for making bioplastics into water solvents. Miscibility can be predicted using UNIQUAC Functional - group Activity Coefficient (UNIFAC) method. The activity coefficient resulting from the UNIFAC calculation of the ternary system of starch, PVA and water shows that the activity coefficient of starch tends to increase with increasing starch composition, while the activity coefficient of PVA is not very stable. The water activity coefficient shows the opposite tendency. Temperature does not seem to have a significant effect on the composition of starch and PVA, from the calculation obtained the starch composition of 0.01045 - 0.15325 and PVA 0.38407 - 0.23860. Likewise, water shows that the heating temperature does not really affect the composition of the water. The calculation of the balance of the mixture is carried out to get the right composition for the mixture of starch, PVA and water to form a perfectly mixed mixture. The results of calculating the composition in equilibrium are shown in the ternary diagram. The diagram shows a single-phase graph, where if a mixture containing 2 components dissolves completely, it will form a single-phase region.

Page 1 of 1 | Total Record : 5