cover
Contact Name
-
Contact Email
jag.ft@ugm.ac.id
Phone
+62274-513668
Journal Mail Official
jag.ft@ugm.ac.id
Editorial Address
Geological Engineering Departement Universitas Gadjah Mada Jl. Grafika No. 2 Kampus UGM Yogyakarta 55281 Phone +62-274-513668 Fax +62-274-546039
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of Applied Geology
ISSN : 25022822     EISSN : 25022822     DOI : https://doi.org/10.22146
Journal of Applied Geology – JAG focuses on the applied geology and geosciences with its key objective particularly emphasis on application of basic geological knowledge for addressing environmental, engineering, and geo-hazards problems. The subject covers variety of topics including geodynamics, sedimentology and stratigraphy, volcanology, engineering geology, environmental geology, hydrogeology, geo-hazard and mitigation, mineral resources, energy resources, medical geology, geo-archaeology, as well as applied geophysics and geodesy.
Articles 5 Documents
Search results for , issue "Vol 1, No 1 (2016)" : 5 Documents clear
Hydrothermal Alteration and Mineralization of the Randu Kuning Porphyry Cu-Au and Intermediate Sulphidation Epithermal Au-Base Metals Deposits in Selogiri, Central Java, Indonesia Sutarto Sutarto; Arifudin Idrus; Agung Harijoko; Lucas Donny Setijadji; Franz Michael Meyer; Sven Sindern; Sapto Putranto
Journal of Applied Geology Vol 1, No 1 (2016)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (23220.401 KB) | DOI: 10.22146/jag.26951

Abstract

The Randu Kuning Porphyry Cu-Au prospect area is situated in the Selogiri district, Wonogiri regency, Central Java, Indonesia, about 40 km to the South-East from Solo city, or approximately 70 km east of Yogyakarta city. The Randu Kuning area and its vicinity is a part of the East Java Southern Mountain Zone, mostly occupied by both plutonic and volcanic igneous rocks, volcaniclastic, silisiclastic and carbonate rocks. Magmatism-volcanism products were indicated by the abundant of igneous and volcaniclastic rocks of Mandalika and Semilir Formation. The Alteration zones distribution are generally controlled by the NE–SW and NW–SE trending structures. At least eight types of hydrothermal alteration at the Randu Kuning area and its vicinity had been identified, i.e. magnetite + biotite ± K-feldspar ± chlorite (potassic), chlorite + sericite + magnetite ± actinolite, chlorite + magnetite ± actinolite ± carbonate (inner propylitic), chlorite + epidote ± carbonate (outer propylitic), sericite + quartz + pyrite (phyllic), illite + kaolinite ± smectite (intermediate argillic), illite + kaolinite ± pyrophyllite ± alunite (advanced argillic) and quatz + chlorite (sillisic) zones. The Randu Kuning mineralization at Selogiri is co existing with the porphyry Cu-Au and intermediate sulphidation epithermal Au-base metals. Mineralization in the porphyry environment is mostly associated with the present of quartz-sulphides veins including AB, C, carbonate-sulphides veins (D vein) as well as disseminated sulphides. While in the epithermal prospect, mineralization is particularly associated with pyrite + sphalerite + chalcopyrite + carbonate ± galena veins as well as hydrothermal breccias. The Randu Kuning porphyry prospect has copper gold grade in range at about 0.66–5.7 gr/t Au and 0.04–1.24 % Cu, whereas in the intermediate sulphidation epithermal contain around 0.1–20.8 gr/t Au, 1.2–28.1 gr/t Ag, 0.05–0.9 % Zn, 0.14–0.59 % Pb and 0.01–0.65 % Cu.
Mineralogical and Geochemical Control of Altered Andesitic Tuff upon Debris Slide Occurences at Pelangan Area, Southern Mountain of Lombok Island, Indonesia Dwi Winarti; Dwikorita Karnawati; Hary Christady Hardiyatmo; Srijono Srijono
Journal of Applied Geology Vol 1, No 1 (2016)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2054.489 KB) | DOI: 10.22146/jag.26953

Abstract

Debris slides were recently found in the Pelangan area at Southern Mountain of Lombok Island, Indonesia. Pelangan is well known as the gold mineralization and hydrothermal alteration area. This study is aimed to identify the mineralogy and geochemistry of altered andesitic tuff that controlled slope instability and induced debris slides. For this purpose, it is necessary to prepare the field observation and laboratory analyses. Landslide inventory reveals that the Pelangan debris slides mostly occur in altered andesitic tuff. Based on the outcrop observations in the field, andesitic tuff found around the Pelangan debris slides have been altered in general. The strong intensity of alteration developed by hydrothermal alteration in this study area produces large amount of clay minerals especially montmorillonite, kaolinite, and illite. The abundance of those clay minerals reflect the intermediate argillic alteration. Montmorillonite is a type of clay mineral that easily swells at wet condition and easily shrinkages at dry condition. Swelling of clay mineral destroys intersheet and interlayer bonds, and reduces shear strength. The presence of clay minerals in the altered andesitic tuff of intermediate argillic zone can be considered as one of the factors that induced to the Pelangan debris slides. Further studies on geotechnical and slope stability analysis of the landslide area are crucial to be done for better understanding of the characteristics of the altered rocks inducing hazardous landslides.
The Effect of Differences Leachate Concentration and Material Properties on Electrical Conductivity of Volcanic Deposits – Case Studies Piyungan Landfill Bantul Yogyakarta Jaingot A. Parhusip; Agung Harijoko; Doni Prakasa Eka Putra; Wiwit Suryanto
Journal of Applied Geology Vol 1, No 1 (2016)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (886.368 KB) | DOI: 10.22146/jag.26956

Abstract

Monitoring at the contaminated subsurface soil, have been conducted by using the geophysical surface method, especially for geoelectrical resistivity method. Monitoring is commonly conducted by using geoelectrical resistivity through measuring the value of Electrical Resistivity (ER) or Electrical Conductivity (EC) of leachate contaminated soil layer. EC measurement value of soil is affected by many factors, among others, particle conduction of soil materials, surface conduction, fluid conduction in the pores as well as the effect of particle shape and soil materials. Piyungan landfill is the main disposal site of Yogyakarta municipal solid waste. This landfill located mainly on the tertiary rocks of volcanic rocks and its weathering products. In order to improve the accuracy of geoelectrical measurements on resistivity in monitoring soil layers from contaminated leachate on this area, this research conducted several measurements on physical properties of soil sample and electrical properties of leachate in the saturated soil samples. The measurement of physical properties includes: porosity, clay content, particle content, and cation exchange capacity (CEC) value. The soil samples were collected from 3 locations around Piyungan Landfill. Type of soils are taken from the alluvial deposits (Sample B), weathered tuffaceous sandstone-claystone (Sample D), and weathered andesitic breccia (Sample F). Samples were made in containers, saturated with aquades-leachate solution with 12 different concentration levels. Electrical conductivity (EC) was measured by using Soil Box Miller and Geoelectric Resistivity Oyo McOhm. According to results of physical properties analysis, the grain size of soils are dominantly sandy clayey silt in grain size distribution, with clay content ranging from 33.0--38.4 %, the CEC values ranging from 26.8--52.7 meq/100 gr, and the porosity of samples B, D and F is 58.85 %, 55.30 %, 59.24 %, respectively. Based on the experiments with 12 different leachate concentrations, there is a linear increase in EC of 0.718mS/cm for every increase in electrical conductivity pore fluid (ECf ) 1 mg/l in samples B, while in samples D and F are 0.492 mS/cm and 0.284 mS/cm respectively. Plotting the data of EC vs ECf for each samples and ER vs ECf , it can be concluded the slope ofDEC/DECf differ for each samples and the electrical conductivity value of different concentration of leachate is very sensitive for alluvial deposits compare to the weathered tuffaceous sandstone-claystone and weathered volcanic breccia deposits.
Comparison of Grain-Size Profile and Depositional Process in Mandeh and Nyalo Bar, Mandeh Bay, West Sumatera, Indonesia Rahmadi Hidayat; Muhammad Fadli Rozamuri
Journal of Applied Geology Vol 1, No 1 (2016)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5294.836 KB) | DOI: 10.22146/jag.26958

Abstract

Shipwreck of MV Boelongan Nederland situated in offshore of Mandeh Bay of West Sumatera is announced as potential area for tourism destination. Many studies were produced in term of its archeological and historical side but there is no significant work in sedimentological aspect. It is critical to understand depositional process of study area regarding the design of construction to minimize the impact of dynamic activity of waves within the area. Moreover, some areas along Mandeh Bay are covered by Cubadak Island as a protection for wave action derived from Indian Ocean that can produce more complexity in depositional process and will reflect to its characteristic of grain-size profiles. Utilizing thirteen sediment samples in two areas that correspond to inside (Mandeh Bar) and outside (Nyalo Bar) coverage of Cubadak Island, this study attempted to compare and contrast both grain-size profiles as well as interpretation of depositional process based on well-known analysis such as bivariate scatter plots, Linear Discriminant Function plot (LDF), Log probability curves and C-M diagram. Result of this study can be integrated by other researches to gain better policy in maintaining the shipwreck conservation. High energy of Indian Ocean wave supported by strong current clearly dominated depositional process in Nyalo Bar with coarser grain-size; good sortation, lower Y2 of LDF plot; extremely high population of traction materials and lower range of C-M. By contrast, presence of Cubadak Island disrupted the wave effectively and created lower and fluctuated energy in Mandeh Bar. This phenomenon was clearly depicted in its characteristic of finer grain-size with higher Y2 value; high abundance of saltation materials and greater ratio of C-M value.
Petrophysics Analysis for Reservoir Characterization of Upper Plover Formation in the Field “A”, Bonaparte Basin, Offshore Timor, Maluku, Indonesia Sugeng Sapto Surjono; Indra Arifianto
Journal of Applied Geology Vol 1, No 1 (2016)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (8830.391 KB) | DOI: 10.22146/jag.26959

Abstract

Hydrocarbon potential within Upper Plover Formation in the Field “A” has not been produced due to unclear in understanding of reservoir problem. This formation consists of heterogeneous reservoir rock with their own physical characteristics. Reservoir characterization has been done by applying rock typing (RT) method utilizing wireline logs data to obtain reservoir properties including clay volume, porosity, water saturation, and permeability. Rock types are classified on the basis of porosity and permeability distribution from routines core analysis (RCAL) data. Meanwhile, conventional core data is utilized to depositional environment interpretations. This study also applied neural network methods to rock types analyze for intervals reservoir without core data. The Upper Plover Formation in the study area indicates potential reservoir distributes into 7 parasequences. Their were deposited during transgressive systems in coastal environments (foreshore - offshore) with coarsening upward pattern during Middle to Late Jurassic. The porosity of reservoir ranges from 1–19 % and permeability varies from 0.01 mD to 1300 mD. Based on the facies association and its physical properties from rock typing analysis, the reservoir within Upper Plover Formation can be grouped into 4 reservoir class: Class A (Excellent), Class B (Good), Class C (Poor), and Class D (Very Poor). For further analysis, only class A-C are considered as potential reservoir, and the remain is neglected.

Page 1 of 1 | Total Record : 5