Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analysis of the Surface Subsidence of Porong and Surrounding Area, East Java, Indonesia based on Interferometric Satellite Aperture Radar (InSAR) Data. Indra Arifianto; Rahmat Catur Wibowo
Journal of Geoscience, Engineering, Environment, and Technology Vol. 5 No. 4 (2020): JGEET Vol 05 No 04: December 2020
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2020.5.4.5149

Abstract

Since 2006, the mud volcano erupted in the Porong area due to wellbore failure triggered by an earthquake (2006) epicenter in the Jogjakarta area. The mud volcano buried several villages with mud and continued erupted until today. Based on the InSAR data, it can be seen that the subsidence is still happening near the dam area and another area that is not related to mud volcano eruption such as the production of two gas fields in the Porong area. Moreover, the Porong area is flat and low, less than 4 meters above sea level. The analysis shows that the subsidence rate in this area is up to 0.5 m/yr. If this subsidence is continuing, the city can be sinking and flooding during the rainy season. The prediction result from this method is about 10 years more and 36 years since in 2006 based on the mudflow rate method.
Identification of Hydrocarbons Sub-Basin Based on Gravity Data Analysis in Lampung Area Muh Sarkowi; Rahmat Catur Wibowo; Suhayat Minardi; Indra Arifianto
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 11 No. 2 (2021)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v11n2.p106-113

Abstract

Gravity Data analyses in Lampung area are carried out to identify potential hydrocarbon sub-basins. The hydrocarbon potential in the Lampung sub-basin is indicated by the presence of hydrocarbon seepage found in Wai Imus, Wai Tahmi, and from oil shown in Ratu-1 and Tujo-1 exploration wells. Spectrum analysis, filtering, gradient, and gravity anomaly modeling determine the presence of potential hydrocarbon sub-basins in the Lampung sub-basin. Our results show that the Bouguer anomaly in the Lampung sub-basin ranges from 0 mGal to 90 mGal. A high anomaly appears in the southern part associated with basement high and a low anomaly in the center area of the western region related to the existence of the large Sumatra fault zone. The Bouguer Anomaly spectrum analysis result shows that basement depth in the Lampung sub-basin is 2400 m to 4400 meters deep. Data analysis of residual Bouguer anomaly, SVD residual Bouguer anomaly, and fault structure identified 18 sub- hydrocarbon potential basins scattered in Way Kanan, Tulang Bawang Barat, Menggala, Mesuji, Terbanggi Besar - Seputih Surabaya (Central Lampung), Sukadana and Labuhan Maringgai (East Lampung) areas. Some volcanic paths were also identified from Ratu-1 well, and Tujo-1 well in the Lampung WKP block. 2.5D modeling results of residual Bouguer anomaly show Kasai, Muara Enim, and Air Benakat, respectively, overburdened rock formations deposited from the top, followed by the Gumai Formation, which acts as a seal formation, while the hydrocarbon reservoirs are from the Baturaja and Talang Akar Formation. Our subsurface depth model has been verified by Ratu-1 and Tujo-1 exploration well.
Petrophysics Analysis for Reservoir Characterization of Upper Plover Formation in the Field “A”, Bonaparte Basin, Offshore Timor, Maluku, Indonesia Sugeng Sapto Surjono; Indra Arifianto
Journal of Applied Geology Vol 1, No 1 (2016)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (8830.391 KB) | DOI: 10.22146/jag.26959

Abstract

Hydrocarbon potential within Upper Plover Formation in the Field “A” has not been produced due to unclear in understanding of reservoir problem. This formation consists of heterogeneous reservoir rock with their own physical characteristics. Reservoir characterization has been done by applying rock typing (RT) method utilizing wireline logs data to obtain reservoir properties including clay volume, porosity, water saturation, and permeability. Rock types are classified on the basis of porosity and permeability distribution from routines core analysis (RCAL) data. Meanwhile, conventional core data is utilized to depositional environment interpretations. This study also applied neural network methods to rock types analyze for intervals reservoir without core data. The Upper Plover Formation in the study area indicates potential reservoir distributes into 7 parasequences. Their were deposited during transgressive systems in coastal environments (foreshore - offshore) with coarsening upward pattern during Middle to Late Jurassic. The porosity of reservoir ranges from 1–19 % and permeability varies from 0.01 mD to 1300 mD. Based on the facies association and its physical properties from rock typing analysis, the reservoir within Upper Plover Formation can be grouped into 4 reservoir class: Class A (Excellent), Class B (Good), Class C (Poor), and Class D (Very Poor). For further analysis, only class A-C are considered as potential reservoir, and the remain is neglected.