Mechanical Engineering for Society and Industry
Aims Mechanical engineering is a branch of engineering science that combines the principles of physics and engineering mathematics with materials science to design, analyze, manufacture, and maintain mechanical systems (mechanics, energy, materials, manufacturing) in solving complex engineering problems. Therefore, this journal accommodates all research documentation and reports on technology applications in society and industry from various technology readiness levels (TRL): basic, applied, and report of technology application. Basic - theoretical concepts of natural science, application of engineering mathematics, special and unique materials science, theoretical principles of engineering design, production, energy conversion, or industrial mechatronics/automation that support mechanical engineering analysis with a sustainable engineering perspective. Applied - thermal-mechanical design (energy, applied mechanics, material selection, material strength analysis) to support sustainable design and engineering capabilities. Report of technology application - the impact of technology on economic and social, ecological principles, sustainability principles (sustainability), communication techniques, and factual knowledge that contribute to solving complex and sustainable engineering problems. Scope Aerodynamics and Fluid Mechanics This scope includes boundary layer control, computational fluid dynamics for engineering design and analysis; turbo engines; aerodynamics in vehicles, trains, planes, ships, and micro flying objects; flow and induction systems; numerical analysis of heat exchangers; design of thermal systems; Wind tunnel experiments; Flow visualization; and all the unique topics related to aerodynamics, mechanics and fluid dynamics, and thermal systems. Combustion and Energy Systems This scope includes the combustion of alternative fuels; low-temperature combustion; combustion of solid particles for hydrogen production; combustion efficiency; thermal energy storage system; porous media; optimization of heat transfer devices; shock wave fundamental propagation mechanism; detonation and explosion; hypersonic aerodynamic computational modeling; high-speed propulsion; thermo-acoustic; low-noise combustion; and all the unique topics related to combustion and energy systems. Design and Manufacturing This scope includes computational synthesis; optimal design methodology; biomimetic design; high-speed product processing; laser-assisted machining; metal plating, micro-machining; studies on the effects of wear and tear; fretting; abrasion; thermoelastic. This scope also includes productivity and cycle time improvements for manufacturing activities; production planning; concurrent engineering; design with remote partners, change management; and involvement of the Industry 4.0 main area in planning, production, and maintenance activities. Dynamics and Control The dynamics and control group includes aerospace systems; autonomous vehicles; biomechanics dynamics; plate and shell dynamics; style control; mechatronics; multibody system; nonlinear dynamics; robotics; space system; mechanical vibration; and all the unique topics related to engine dynamics and control. Materials and Structures The scope of this field includes composite fabrication processes; high-performance composites for automotive, construction, sports equipment, and hospital equipment; natural materials; special materials for energy sensing and harvesting; nanocomposites and micromechanics; the process of modeling and developing nanocomposite polymers; metal alloys; energy efficiency in welding and joining materials; vibration-resistant structure; lightweight-strong design; and all the unique topics related to materials and construction. Vibrations, Acoustics, and Fluid-Structure Interaction This group includes nonlinear vibrations; nonlinear dynamics of lean structures; fluid-structure interactions; nonlinear rotor dynamics; bladed disc; flow-induced vibration; thermoacoustic; biomechanics applications; and all the unique topics related to vibrations, acoustics, and fluid-structure interaction.
Articles
13 Documents
Search results for
, issue
"Vol 4 No 2 (2024)"
:
13 Documents
clear
Characteristics of syngas combustion resulting from coffee husk biomass waste gasification process: Overview of automotive fuel alternatives
Sanata, Andi;
Sholahuddin, Imam;
Nashrullah, Muhammad Dimyati;
Nanlohy, Hendry Y.;
Panithasan, Mebin Samuel
Mechanical Engineering for Society and Industry Vol 4 No 2 (2024)
Publisher : Universitas Muhammadiyah Magelang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31603/mesi.12590
The production of syngas from coffee husk biomass waste as a raw material offers significant potential as an alternative automotive fuel source through the gasification process, considering the abundant resources available. Therefore, this study aimed to characterize the physical properties of the fuel initially, in order to observe the differences in these properties after the fuel underwent Ultra Fine Bubble treatment. The objective was to analyze the combustion characteristics of syngas derived from coffee husk biomass waste, to develop a sustainable alternative to fossil fuels for automotive applications. The results showed that with increasing air discharge, the concentration of CO and Hâ‚‚ gases in gasified syngas increased while the concentration of CH4 decreased. Additionally, higher air discharge resulted in lower tar content, higher flame temperature, higher flame height visualization, and higher generator power output as a review of the feasibility of alternative automotive fuels.
Designing a disturbance estimator for electric power steering robust controller
Sanaie, Pooriya;
Mollajafari, Morteza
Mechanical Engineering for Society and Industry Vol 4 No 2 (2024)
Publisher : Universitas Muhammadiyah Magelang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31603/mesi.12650
Electric power steering, one of the most important advances in the automotive industry, is now found even in the most affordable cars. However, due to the chaotic driving environment, with multiple sources of noise and disturbances affecting the system, effective control of this technology remains a major challenge. Because of manufacturing cost constraints, the use of expensive components, such as high-end microcontrollers or numerous sensors, is not economically viable. Therefore, it is imperative to implement a cost-effective control method that ensures stability, safety, and other necessary requirements. This paper explains the complexities of electric power steering, represents its dynamic nature through mathematical modeling while considering noise and disturbances as integral inputs to the system, and introduces a robust controller designed to estimate these inputs. The method to estimate noise and disturbances using a sliding mode controller is also examined. Finally, the theoretical assertions presented earlier in this paper have been substantiated through meticulous simulations using MATLAB. These simulations have not only confirmed the validity of the claims but also provided a comprehensive evaluation of the system's operational efficacy, ensuring a robust foundation for future research and applications.
Towards decarbonization goals: A Pathway to a sustainable future
Kolakoti, Aditya;
Setiyo, Muji
Mechanical Engineering for Society and Industry Vol 4 No 2 (2024)
Publisher : Universitas Muhammadiyah Magelang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31603/mesi.12871
Nature operates on a delicate balance of give and take. However, in the name of development, human activities have disrupted this balance by polluting ecosystems and releasing excessive greenhouse gases into the atmosphere. As a result, global temperatures are reaching unprecedented levels, leading to abrupt climatic changes that pose a significant threat to humanity. Immediate and collective action is essential to ensure the survival of future generations. The adoption of Decarbonization goals offers a promising pathway to mitigate greenhouse gas emissions and reduce the pollution burden on Earth, aiming for substantial progress by 2030.