cover
Contact Name
Risky Ayu Kristanti
Contact Email
ayukristanti@gmail.com
Phone
+6282153870439
Journal Mail Official
gisa@tecnoscientifica.com
Editorial Address
Editorial Office - Green Intelligent Systems and Applications Jalan Asem Baris Raya No 116 Kebon Baru, Tebet, Jakarta Selatan Jakarta 12830, Indonesia
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Green Intelligent Systems and Applications
Published by Tecno Scientifica
ISSN : -     EISSN : 28091116     DOI : https://doi.org/10.53623/gisa.v2i1
The journal is intended to provide a platform for research communities from different disciplines to disseminate, exchange and communicate all aspects of green technologies and intelligent systems. The topics of this journal include, but are not limited to: Green communication systems: 5G and 6G communication systems, power harvesting, cognitive radio, cognitive networks, signal processing for communication, delay tolerant networks, smart grid communications, power-line communications, antenna and wave propagation, THz technology. Green computing: high performance cloud computing, computing for sustainability, CPSS, computer vision, distributed computing, software engineering, bioinformatics, semantics web. Cyber security: cryptography, digital forensics, mobile security, cloud security. Internet of Things (IoT): sensors, nanotechnology applications, Agriculture 5.0, Society 5.0. Intelligent systems: artificial intelligence, machine learning, deep learning, big data analytics, neural networks. Smart grid: distributed grid, renewable energy in smart grid, optimized power delivery, artificial intelligence in smart grid, smart grid control and operation.
Articles 51 Documents
Implementation of the You Look Only Once (YOLOv11) Algorithm to Detect the Ripeness of Golden Melons Tandoballa, Lucky; Hartati, Ery
Green Intelligent Systems and Applications Volume 5 - Issue 2 - 2025
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/gisa.v5i2.934

Abstract

Melon is a horticultural commodity with high economic value, and characteristics such as sweetness, aroma, texture, and phytonutrient content significantly influenced consumer preference. Conventional methods for determining melon ripeness were time-consuming, required considerable expertise, and were often prone to subjective errors, ultimately slowing the production and distribution process. This study aimed to detect the ripeness level of golden melon fruit non-destructively using the YOLOv11 algorithm, focusing on external physical characteristics as the basis for classification. The objectives included applying transfer learning to categorize golden melon into ripe and unripe classes and evaluating model performance using precision, recall, mAP50, mAP50-95, and F1-score. The research methodology consisted of a literature review, dataset collection from previous studies, system design, implementation, and performance testing. The dataset was divided into 70% training, 20% validation, and 10% testing data, and the Adam optimizer was used during the training phase. Based on four experimental scenarios, scenario 3 produced the best and most consistent results, achieving a precision of 90.58%, a recall of 90.79%, an mAP50 of 97.31%, an mAP50-95 of 88.84%, and an F1-score of 92.97%. These findings demonstrated that scenario 3 offered optimal performance for detecting golden melon ripeness. Thus, the model was highly reliable overall.