cover
Contact Name
Tony Hadibarata
Contact Email
hadibarata@gmail.com
Phone
+6282153870439
Journal Mail Official
idwm@tecnoscientifica.com
Editorial Address
Editorial Office - Industrial and Domestic Waste Management Jalan Asem Baris Raya No 116 Kebon Baru, Tebet, Jakarta Selatan Jakarta 12830, Indonesia
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Industrial and Domestic Waste Management
Published by Tecno Scientifica
ISSN : -     EISSN : 28094255     DOI : https://doi.org/10.53623/idwm.v2i1
Core Subject : Social, Engineering,
The journal is intended to provide a platform for research communities from different disciplines to disseminate, exchange and communicate all aspects of industrial and domestic waste management. The topics of this journal include, but are not limited to: Address waste management policy, education, and economic and environmental assessments Pollution prevention, clean technologies, conservation/recycling/reuse Multicriteria assessment of waste treatment technologies Stakeholder role: technology implementation, future technology management strategies Participatory decision making, integration of policies/research in the waste sector Case studies and environmental impact analysis in the waste sector Air, water, soil, groundwater, radiological pollution, control/management Environmental pollution, prevention/control, waste treatment/management Water and municipal/agricultural/industrial wastewater and waste treatment Solid/hazardous/biosolids/residuals waste, treatment/minimization/disposal/management Environmental quality standards, legislation, regulations, policy Public/environmental health, environmental toxicology, risk assessment Sources/transport/fate of pollutants in the environment; remediation, restoration Mathematical/modelling techniques, case studies
Articles 5 Documents
Search results for , issue "Volume 3 - Issue 1 - 2023" : 5 Documents clear
Driving Forces on Household Solid Waste Management Behaviors: A Research for the City of Izmir, Türkiye Guven, Elif Duyusen; Akinci, Gorkem; Temel, Dilara
Industrial and Domestic Waste Management Volume 3 - Issue 1 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i1.165

Abstract

The proper solid waste recycling process starts at the houses with the attendance of the individuals. The presented study includes comprehensive research on the individuals’ shopping and waste generation behaviors, awareness of waste management issues, readiness and willingness for source separation, and their self-evaluation and self-annoyance about waste generation. The current study was conducted by administering a detailed questionnaire to 300 people in Zmir, Türkiye's third largest city. The relationships between the answers given and the main factors affecting waste production were determined statistically. Principal component analysis (PCA) identified the key drivers of public behavior associated with waste generation and separation at the source. Through environmental sensitivity, including proper waste management behaviors, age is discovered to be a significant factor. Family phenomena, including stable life and family budgets (32.58%), awareness of people about their inappropriate and disproportionate behaviors towards consumption and waste generation (21.28%), and the impositions of urban life (9.37%) were found to be the major factors influencing waste management habits.
Heavy Metals in the Soil Around a Cement Company in Sokoto, Northwestern Nigeria Pose Health Risks Yahaya, Tajudeen; Umar, Abdulrazak; Abubakar, Muddassiru; Abdulazeez, Abdulmalik; Musa, Bilyaminu; Ibrahim, Yusuf
Industrial and Domestic Waste Management Volume 3 - Issue 1 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i1.183

Abstract

Cement is widely used in the building industry because it is reliable and because its basic ingredients are inexpensive and abundant. However, the production of cement produces heavy metal-laden dust that can harm humans and the environment. This study aimed to determine the risk posed by heavy metals in the soil around a cement company in Sokoto, Nigeria. Soil samples were obtained at 0.1, 0.5, and 1.0 km from the company and served as test samples, while control samples were obtained at 5.0 km away. The soil samples were treated and assayed for lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) using atomic absorption spectroscopy. The values obtained were used to estimate the heavy metals’ average daily inhalation (ADI), average daily dermal exposure (ADDE), hazard quotient (HQ), health risk index (HRI), and carcinogenic risk (CR). Permissible levels of all the heavy metals were detected at all the locations (0.1 > 0.5 > 1.0 > 5.0 km). However, the ADI, ADDE, HQ, HRI, and CR of the heavy metals were above the permissible limits. It can be inferred from the results that the soil around the company can predispose humans to heavy metal toxicities. Consequently, the company needs to prioritize pollution control.
The Impact of Process Variables on the Quantity and Quality of Biogas Generated from Anaerobic Digestion of Food Waste and Rumen Contents Amoo, Afeez Oladeji; Ahmed, Sabo; Haruna, Adamu
Industrial and Domestic Waste Management Volume 3 - Issue 1 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i1.196

Abstract

This research aimed to investigate how combining process variables affects biogas production from anaerobic digestion of food waste and rumen contents. A mixture design was used to evaluate the effects of temperature, pH, agitation frequency, and retention time on biogas quantity and quality. Anaerobic mono-digestion and co-digestion were performed using 2 liter single-stage plastic anaerobic digesters. Cumulative biogas volume and its composition, including carbon dioxide, hydrogen sulphide, moisture, and methane content, were estimated volumetrically. The highest biogas volume and quality were obtained under the following conditions: food waste (0.30 kg), rumen content (0.30 kg), water content (0.40 kg), temperature (34.0° C), pH (9.0), agitation frequency (4 times/day), and retention time (32 days). Combining process variables can significantly impact biogas quantity and quality, and optimal process parameters vary depending on the substrate and operational conditions. Anaerobic digestion can effectively manage organic waste, produce renewable energy, and mitigate greenhouse gases.
Municipal Wastewater Treatment Technologies in Malaysia: A Short Review Kristanti, Risky Ayu; Bunrith, Seng; Kumar, Ravinder; Mohamed, Abdelrahim Omar
Industrial and Domestic Waste Management Volume 3 - Issue 1 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i1.243

Abstract

The aim of this study was to evaluate different municipal wastewater treatment technologies for commercial use and develop an optimized system for a case study plant and future plant designs. Municipal wastewater, classified as a low-strength waste stream, can be treated using aerobic and anaerobic reactor systems or a combination of both. Aerobic systems are suitable for low-strength wastewaters, while anaerobic systems are suitable for high-strength wastewaters. Malaysia has actively implemented various wastewater treatment technologies to address the increasing demand for clean water and reduce environmental pollution. Some commonly used technologies in Malaysia include Activated Sludge Process (ASP), Membrane Bioreactor (MBR), and Moving Bed Biofilm Reactor (MBBR). These technologies show promise in removing emerging pollutants, such as pharmaceuticals and personal care products, which are not effectively eliminated by conventional treatment methods. Additionally, Malaysia could consider investing in renewable energy sources like solar and wind to power wastewater treatment plants, thereby reducing reliance on non-renewable energy and supporting sustainable development. It is also important to emphasize continued public awareness and education initiatives to promote responsible wastewater disposal practices and environmental stewardship.
Exploring the Potential of Composting for Bioremediation of Pesticides in Agricultural Sector Lau, Yu Yan; Hernandes, Erika; Kristanti, Risky Ayu; Wijayanti, Yureana; Emre, Mehmet
Industrial and Domestic Waste Management Volume 3 - Issue 1 - 2023
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i1.245

Abstract

The rapid expansion of the human population has raised the chemical stress on the environment due to the increased demand of agricultural yields. The use of pesticides is the primary contributor to environmental chemical stress, which is essential for agricultural expansion in order to produce enough food to sustain the burgeoning human population. Pesticide residues in soil have grown to be a subject of rising concern as a result of their high soil retention and potential harm to unintended species. Diverse remediation strategies, such as physical, chemical, and biological, for limiting and getting rid of such contaminants have been put forth to deal with this problem. Bioremediation is one of these techniques, which has been deemed the best for reducing pollution because of its low environmental impact, simplicity of operation and construction. Microorganisms are implemented in this technique to break down and get rid of toxins in the environment or to reduce the toxicity of chemical compounds. This study thoroughly analyses the different composting soil remediation methods, including landfarming, biopiles, and windrows, to reduce and eliminate soil pollution. Although biological treatment is the best option for cleaning up polluted soil, it is still important to evaluate and review the approaches over the long term to determine whether they are effective in the field. It is because the reactivity of the microorganisms is highly dependent on environmental parameters, and the contemporary environment is characterised by unpredictable weather patterns, localised droughts, and temperature fluctuations.

Page 1 of 1 | Total Record : 5