cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 7 Documents
Search results for , issue "Vol 3, No 2 (2014): July 2014" : 7 Documents clear
Performance, Emissions and Combustion Characteristics of a Single Cylinder Diesel Engine Fuelled with Blends of Jatropha Methyl Ester and Diesel Debasish Padhee; Hifjur Raheman
International Journal of Renewable Energy Development Vol 3, No 2 (2014): July 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.2.125-131

Abstract

In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel substitute for internal combustion engines. An experimental investigation was performed to study the performance, emissions and combustion characteristics of diesel engine fuelled with blends of Jatropha methyl ester and diesel. In the present work three different fuel blends of Jatropha methyl ester (B10, B20, B40 and B100) were used. The increments in load on the engine increase the brake thermal efficiency, exhaust gas temperature and lowered the brake specific fuel consumption. The biodiesel blends produce lower carbon monoxide & unburned hydrocarbon emission and higher carbon dioxide & oxides of nitrogen than neat diesel fuel. From the results it was observed that the ignition delays decreased with increase in concentration of biodiesel in biodiesel blends with diesel. The combustion characteristics of single-fuel for biodiesel and diesel have similar combustion pressure and HRR patterns at different engine loads but it was observed that the peak cylinder pressure and heat release rate were lower for biodiesel blends compared to those of diesel fuel combustion.
Castor Seed from Melkasa Agricultural Research Centre, East Showa, Ethiopia and it’s biodiesel performance in Four Stroke Diesel Engine Tesfahun Tegegne Akanawa; Haimanot Gebrehiwot Moges; Ramesh Babu; Daniel Bisrat
International Journal of Renewable Energy Development Vol 3, No 2 (2014): July 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.2.99-105

Abstract

This study focused in investigating the fuel properties of Castor oil Methyl Ester (CME) and its blend with diesel fuel in running a diesel engine. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, and specific fuel consumption. Castor oil was extracted by using a mechanical pressing machine and trans-esterification was made by methyl alcohol and potassium hydroxide as a catalyst.  So that its viscosity and density were reduced and by increasing its volatility.  By following the procedures given in American Society for Testing and Materials (ASTM) book the fuel characteristics were identified whether it fulfil the requirements needed to be used as a fuel in internal combustion engines or not. From the characterization result, it was proved that trans-esterified castor oil was found to be a promising alternative fuel for compression ignition (diesel) engines. But the viscosity of CME was still higher and the energy content was a little bit less as compared to petro diesel. To solve these problems CME was blended with petro diesel in some proportion (B5, B10, B20, B40, B80). The torque, power and brake specific fuel consumption performances of CME and its blends with petro diesel were tested in a four stroke diesel engine. The analyzed results were compared with that of petro diesel and found to be very nearly similar, making CME a suiTable alternative fuel for petro diesel.
The characteristic changes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment Widya Fatriasari; Wasrin Syafii; Nyoman J Wistara; Khaswar Syamsu; Bambang Prasetya
International Journal of Renewable Energy Development Vol 3, No 2 (2014): July 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.2.133-143

Abstract

The fungal pretreatment effect on chemical structural and morphological changes of Betung Bamboo was evaluated based on its biomass components after being cultivated by white rot fungi, Trametes versicolor. Betung bamboo powder (15 g) was exposed to liquid inoculum of white rot fungi and incubated at 270C for 15, 30 and 45 days. The treated samples were then characterized by FT-IR spectroscopy, X-Ray diffraction and SEM-EDS analyses. Cultivation for 30 days with 5 and 10% loadings retained greater selectivity compared to that of the other treatments. FTIR spectra demonstrated that the fungus affected the decreasing of functional group quantities without changing the functional groups. The decrease in intensity at wave number of 1246 cm-1 (guaiacyl of lignin) was greater than that at wave number of 1328 cm-1 (deformation combination of syringyl and xylan) after fungal treatment. X-ray analysis showed the pretreated samples had a higher crystallinity than the untreated ones which might be due to the cleavage of amorphous fractions of cellulose. The pretreated samples have more fragile than the untreated ones confirmed by SEM. Crystalline allomorph calculated by XRD analysis showed that fungus pretreatment for 30 days has transformed triclinic structure of cellulose to monoclinic structure.
Tin (II) Chloride Catalyzed Esterification of High FFA Jatropha Oil: Experimental and Kinetics Study Ratna Dewi Kusumaningtyas; Prima Astuti Handayani; Rochmadi Rochmadi; Suryo Purwono; Arief Budiman
International Journal of Renewable Energy Development Vol 3, No 2 (2014): July 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.2.75-81

Abstract

Biodiesel is one of the promising energy source alternatives to fossil fuel. To produce biodiesel in a more economical way, the employment of the low-cost feed stocks, such as non-edible oils with high free fatty acid (FFA), is necessary. Accordingly, the esterification reaction of FFA in vegetable oils plays an important role in the biodiesel production. In this work, esterification of FFA contained in Crude Jatropha Oil (CJO) in the presence of tin (II) chloride catalyst in a batch reactor has been carried out. The esterification reaction was conducted using methanol at the temperature of 40-60 °C for 4 hours. The effect of molar ratio of methanol to oil was studied in the range 15:1 to 120:1. The influence of catalyst loading was investigated in the range of 2.5 to 15% w/w oil. The optimum reaction conversion was obtained at 60 °C with the catalyst loading of 10% w/w oil and molar ratio of methanol to oil of 120:1. A pseudo-homogeneous reversible second order kinetic model for describing the esterification of FFA contained in CJO with methanol over tin (II) chloride catalyst was developed based on the experimental data. The kinetic model can fit the data very well.
Economic feasibility of large scale PV water pumping applications utilizing real field data for a case study in Jordan Ibrahim Odeh
International Journal of Renewable Energy Development Vol 3, No 2 (2014): July 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.2.107-117

Abstract

Economic viability of photovoltaic, diesel and grid connected water pumping systems is investigated and compared for system capacities in the range 1500 m4/day to 100,000 m4/day. Actual performance data from installed systems are considered in calculating systems outputs for base case scenarios. Sensitivity analysis is carried out to generalize results for other locations and conditions. Several scenarios of the effect of variation electricity tariffs, components prices, diesel fuel prices, operation cost and interest rate on the output water unit cost (US$/1000m4)  are investigated.  Breakeven points of PV pumping systems are determined at certain input parameters.
Utilization of Iles-Iles and Sorghum Starch for Bioethanol Production Kusmiyati Kusmiyati; Agus Sulistiyono
International Journal of Renewable Energy Development Vol 3, No 2 (2014): July 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.2.83-89

Abstract

The aims of this study were to convert the starches from iles-iles tubers (Amorphophalus campanulatus) and sorghum grains (Sorghum bicolor L) into bioethanol as an alternative energy. Both of these agricultural products contains a high content starches and they do not use as the major foods in Indonesia. To find out the maximum ethanol concentration and yield, both the raw materials were converted to ethanol on various process variables including the concentration of flour substrate solution (100-300 g/L), β-amylase enzyme concentration (0.8 - 6.4 ml/kg of flour ), the  concentration of dry yeast S. cerevisiae (2-15 g), and fermentation time (72-168 hours). The results showed that at the flour substrate concentration of 250 g/L produced the maximum ethanol contents of 100.29 g/L and 95.11 g/L   for iles-iles and sorghum, respectively. Effect of β-amylase enzyme in the saccharification process showed that at concentration  of 3.2 ml/kg  the maximum reducing sugar content of 204.94 g/L and 193.15 g/L  for iles-iles and sorghum substrate, respectively were generated therefore it was corresponding to the maximum ethanol production. The concentration effect of dry yeast S. cerevisiae in the fermentation stage for the iles-iles and sorghum substrate revealed that the maximum ethanol obtained at 5 g yeast activated in 100 ml medium starter resulted the highest ethanol content 100.29 g/L 95.11 g/L for iles-iles and sorghum substrate, respectively. To determine the effect of fermentation time on ethanol yield from iles-iles and sorghum substrate, the fermentation process were performed at 3, 5, and 7 days. The maximum ethanol fermentation was obtained at 5 days fermentation. The ethanol yield is calculated by weight of ethanol is formed (g) divided by the weight of flour (g). Based on the experiment results, conducted, generally the highest ethanol yield of iles-iles was higher than that of sorghum flour. The highest yield (g/g) iles-iles and sorghum flour were 71.25 and 68.92 respectively
Development of Briquette from Coir Dust and Rice Husk Blend: An Alternative Energy Source Md. Hamidul Islam; Md. Mosharraf Hossain; Md. Abdul Momin
International Journal of Renewable Energy Development Vol 3, No 2 (2014): July 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.2.119-123

Abstract

Biomass is one of the predominant renewable energy sources and the use of biomass for the energy generation has got much attention due to its environmental friendliness. Densification of coir dust into fuel briquette can solve waste disposal problem as well as can serve as an alternative energy source. The objective of this study was to investigate the possibility of producing briquette from coir dust and rice husk blend without binder. During this study, a briquetting experiment was conducted with different coir dust and rice husk blends (i.e. coir dust and rice husk ratio of 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100). Briquetting operation was performed using a die-screw press type briquetting machine. The briquettes were tested to evaluate their density, compressive strength, calorific value, burning rate and water vaporizing capacity and it was found that mixing ratio had a significant effect on the physical, mechanical and combustion properties of the coir dust-rice husk briquettes. Density, compressive strength and calorific value and water vaporizing capacity were increased with increasing mixing ratio while burning rate was decreased. Coir dust-rice husk briquettes with mixing ratio of 20:80 had higher density (1.413 g/cm3), compressive strength (218.4 N/cm2), calorific value (4879 kcal/kg), water vaporizing capacity (0.853 l/kg) and low burning rate (0.783 kg/hour) followed by the mixing ratio 40:60, 50:50, 60:40 and 0:100. The results indicate that coir dust and rice husk blend briquettes were found to have better overall handling characteristics over rice husk briquette. However, production of briquettes from coir dust and rice husk at mixing ratio of 50:50 was found to be more suitable for commercial application in terms of cost effectiveness.

Page 1 of 1 | Total Record : 7


Filter by Year

2014 2014


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue