cover
Contact Name
Himawan Tri Bayu Murti Petrus
Contact Email
jurnal.rekpros@ugm.ac.id
Phone
-
Journal Mail Official
jurnal.rekpros@ugm.ac.id
Editorial Address
Jl. Grafika No. 2, Yogyakarta, Indonesia
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Rekayasa Proses
ISSN : 1978287X     EISSN : 25491490     DOI : -
Core Subject : Engineering,
Jurnal Rekayasa Proses is an open-access journal published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada as scientific journal to accommodate current topics related to chemical and biochemical process exploration and optimization which covers multi scale analysis from micro to macro and full plant size. Specialization topics covered by Jurnal Rekayasa Proses are: 1. Kinetics and Catalysis Includes simulations and experiments in reaction kinetics, catalyst synthesis and characterization, reactor design, process intensification, microreactor, multiphase reactors, multiscale phenomena, transfer phenomena in multiphase reactors. 2. Separation and Purification System Includes phase equilibrium, mass transfer, mixing and segregation, unit operation, distillation, absorption, extraction, membrane separation, adsorption, ion exchange, chromatography, crystallization and precipitation, supercritical fluids, bioprocess product purification. 3. Process System Engineering Includes simulation, analysis, optimization, and process control on chemical/biochemical processes based on mathematical modeling; multiscale modeling strategy (molecular level, phase level, unit level, and inter-unit integration); design of experiment (DoE); current methods on simulation for model parameter determination. 4. Oil, Gas, and Coal Technology Includes chemical engineering application on process optimization to achieve utmost efficiency in energy usage, natural gas purification, fractionation recovery, CO2 capture, coal liquefaction, enhanced oil recovery and current technology to deal with scarcity in fossil fuels and its environmental impacts. 5. Particle Technology Includes application of chemical engineering concepts on particulate system, which covers phenomenological study on nucleation, particle growth, breakage, and aggregation, particle population dynamic model, particulate fluid dynamic in chemical processes, characterization and engineering of particulate system. 6. Mineral Process Engineering Includes application of chemical engineering concepts in mineral ore processing, liberation techniques and purification, pyrometallurgy, hydrometallurgy, and energy efficiency in mineral processing industries. 7. Material and biomaterial Includes application of chemical engineering concepts in material synthesis, characterization, design and scale up of nano material synthesis, multiphase phenomena, material modifications (thin film, porous materials etc), contemporary synthesis techniques (such as chemical vapor deposition, hydrothermal synthesis, colloidal synthesis, nucleation mechanism and growth, nano particle dispersion stability, etc.). 8. Bioresource and Biomass Engineering Includes natural product processing to create higher economic value through purification and conversion techniques (such as natural dye, herbal supplements, dietary fibers, edible oils, etc), energy generation from biomass, life cycle and economic analysis on bioresource utilization. 9. Biochemistry and Bioprocess Engineering Includes biochemical reaction engineering, bioprocess optimization which includes microorganism selection and maintenance, bioprocess application for waste treatment, bioreactor modeling and optimization, downstream processing. 10. Biomedical Engineering Includes enhancement of cellular productions of enzymes, protein engineering, tissue engineering, materials for implants, and new materials to improve drug delivery system. 11. Energy, Water, Environment, and Sustainability Includes energy balances/audits in industries, energy conversion systems, energy storage and distribution system, water quality, water treatment, water quality analysis, green processes, waste minimization, environment remediation, and environment protection efforts (organic fertilizer production and application, biopesticides, etc.).
Articles 8 Documents
Search results for , issue "Vol 11 No 2 (2017): Volume 11, Number 2, 2017" : 8 Documents clear
Komputasi dinamika fluida pada T–mikro mixer Putri Ramadhany
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.26933

Abstract

Fluid diffusion can occur effectively if a high gradient concentration exists in every part of the fluid. This can be achieved by decreasing the cross section area of the channel into micro size. The miniatur size of micro mixer can be very effective for molecular diffusion in the mixing process. In this research, the modeling of mixing and heat transfer in the passive micro mixer was conducted. T-shaped mixer was chosen as micro mixer. Water was used as medium and passive tracers were added to differentiate water profile from two different inlets. Mixing and heat transfer profiles inside the T-micro mixer were observed. The computational fluid dynamics (CFD) modeling of mixing and heat transfer in the T-micro mixer was completed by ANSYS®. The effect of geometry and average input velocity of fluids on mixing process were observed. The result of this research included: (1) When the laminar flow is the dominant flow (Re is 25), the tracer mixing is not particularly seen. The tracer mixing is observed when the average velocity is increased (Re increases), (2) The heat flux to the wall (4.85x10-6 Watt/m2) occurred when T–micro mixer is no longer isothermal, (3) The scale–up to factor ten does not necessarily improve the mixing performance (Re is kept constant), and (4) When the shape of cross section is changed to circle (cross section area is kept constant), the mixing performance is not necessarily improved.
Pengaruh penambahan surfaktan sodium lignosulfonat (SLS) dalam proses pengendapan nano calcium silicate (NCS) dari geothermal brine M. Ridho Ulya; Indra Perdana; Panut Mulyono
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.28245

Abstract

High concentration of dissolved silica in geothermal brine frequently causes operational problem in production of steam for electric generation. Mitigation of silica scaling is necessary to reduce the risk of steam production failure. In the present work, silicic acid in Dieng geothermal brine was reduced by introduction of calcium hydroxide that lead to formation of insoluble nano calcium silicates (NCS).The purpose of this work was to control size of the precipitated NCS by introducing surfactant sodium lignosulfonate (SLS) as surfactant in the Ca(OH)2 added geothermal brine. The effect of temperature (30, 50 and 70°C), pH (7, 8 and 9), and surfactant concentration (0.05, 0.15 and 0.30% (w/v)) on the particle size of the resulting NCS was studied to obtain the optimum operating condition. The precipitation-sedimentation behavior of the resulting particles was measured in a vertical tube. Having measured the solid density and solution density and viscosity, average diameter of the precipitated particles was determined using stoke’s principle. The calculated particle size was the compared with measurement result using particle size analyzer (PSA). The soluble silica concentration in the solution was measured using spectroscopy method while composition of the resulting solid particles was measured using EDX and FTIR. Experimental results showed that the dissolve silica in Dieng geothermal brine can be reduced and controlled with the addition of Ca(OH)2 and surfactant SLS. The greater the concentration of surfactant SLS, the smaller the resulting particle size. It was found that the formation of NCS particles was accompanied with precipitation of silica and salts. The optimum condition of NCS formation was at temperature 30°C and pH 9 while the concentration of surfactant SLS added to the brine was 0.3 % (w/v).
Evaluasi nilai difusivitas ion kalsium dan magnesium pada proses low salinity waterflood di batuan Berea Yusardhany Yusuf; Suryo Purwono; Sang Kompiang Wirawan
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.28890

Abstract

In recent years Low Salinity Waterflood (LSW) had been supposed as trusty method to improve oil recovery and the most essential aspect is a alteration of divalent ion concentration in reservoir pore volume as a respon LSW. The objective of this paper are to find divalent diffusivity constant (Ca2+ and Mg2+) in berea sandstone by ionsmass conservation equation along with Atomic Absorption Spectroscopy (AAS) as validation. The study was conducted at 2 berea core having porosity : 0.235 and 0.230 and permeability : 661 mD and 550 mD, we use synthetic formation water accordance to "LN" field property. Experiment was treated by by diluting Ca2+ up to 79% from its original value and by diluting Mg2+ up to 95% from its original value while other ion were maintained fit to their original value. As a result we got difusion constant 0.0620 cm2.min-1 and 0.2667 cm2.min-1for Ca2+ and Mg2+, respectively.
Adsorpsi air dari campuran uap etanol-air dengan zeolit sintetis 4A pada packed bed dalam rangka produksi fuel grade ethanol Handrian Handrian; Wahyudi Budi Sediawan; Aswati Mindaryani
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.30344

Abstract

Ethanol can be used as fuel if it has a purity of 99.5%, while ethanol distillation will stop at its azeotrop point, ie at 95.6%. Adsorption of molecular sieve is one of the methods to obtain ethanol with level above the azeotropic point. Adsorbent that serves as molecular sieve is synthetic zeolite 4A. The adsorbent has a pore diameter of 3.9 Ǻ, then water and ethanol each has a molecular diameter of 2.75 Ǻ and 4.4 Ǻ. Hence the adsorbent is selective against the ethanol-water mixture. The purpose of this research is to obtain ethanol above its azeotropic point and to study the relationship between the influence of flow rate (Vz) and temperature (T) to changes in the number of mass transfer coefficient (kc), radial diffusivity (Der) and henry constants (H') which can be used as parameters in the design of adsorption tools on a commercial scale.This experiment was conducting by weighing zeolite 4A as much as 100 grams, then compiled and measured the height on packed bed column adsorbent. The heating regulator is switched on and set to a constant temperature of 80, 85, 90, 95 and 100 0C. Ethanol 95.61% with 250 ml volume is put into three-neck flask, then heat to evaporate. Turn on the cooling back and adjust the amount of formed vapor rate by adjusting the faucet opening and the degree of voltage in the heating mantle. The magnitude of the vapor flow rate is set at 2, 4 and 6 liters / minute. The products is accomodated and samples were taken every minute to analyze the ethanol content.This adsorption process gives the highest yield of ethanol with 99.40% content. The steam flow rate of 2 lpm and the temperature of 800C is the optimum combination in this research because much of the water vapor adsorbed on the 4A zeolite grain is 7.93 grams. The numerical calculation provides the result that the value of Der in this experiment is 1.59.10-3 cm2 / men, and the relation of kc are the function of reynolds and H' the function of temperature are as follows: kc=7.95.10-3(ρ.vz.D/μ)0.164 and H'=4.47.10-3.e(2565.26/T)
Pengurangan zat warna remazol red Rb menggunakan metode elektrokoagulasi secara batch Novie Putri Setianingrum; Agus Prasetya; Sarto Sarto
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.26900

Abstract

Batik is one of the distinctive cultural chacteristic of the Indonesian national that has gained recognition from UNESCO. Batik industries have grown rapidly. However, the activity industry produces liquid, especially from batik’s dyeing processes.. The conventional method which is used for processing wastewater still has limitation so that an innovation method wastewater treatment is need for example electrocoagulation. Electrocoagulation is a process of coagulation using unidirectional electrics current through electro-chemical process. In this work, electrocoagulation was employed to treat wastewater (synthetic dyes remazol red (Rb) as wastewater model). The method was carried out by varying the distance between electrode distance and electrical voltage. Variation of distance between electrode range were 2 cm and 3 cm while variation of electrical voltage range were 10 volt and 15 volt. To determine the effect of electrode distance and electrical voltage on treatsment performances the chemical oxygen demand(COD), total suspended solid (TSS) and waste color. The samples were taken at 10 minutes, 20 minutes, 40 minutes and 60 minutes during the process. The results showed that the distance of the electrode and the voltage affected to thr reduction of COD, TSS and waste color. The optimum elecrode distance and voltage in this research were 2 cm and 10 volt. The research showed the decrease in COD concentration from 428 mg/L to 54 mg/L, TSS concentration from 850 mg/L to 277 mg/L and the decrease in waste color from 2733 PtCo to 75,5 PtCo.
Pengaruh penambahan limestone terhadap kuat tekan semen Portland komposit Irfan Purnawan; Andi Prabowo
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.31136

Abstract

Cement is the main component of construction that makes it a significant commodity. Portland Composite Cement (PCC) is one of new cement variants that has similar characteristic to Portland Cement, but with better quality, more environmentally friendly and cheaper in price. The objective of this research is to understand the influence of limestone to the compressive strength of the cement and to determine the percentage of added limestone that gives maximum compressive strength to PPC. The limestone varies added to the cement are 0, 5, 10, 15, 20 and 25%. The impact of added limestone can be studied from several tests such as fineness test, residue test, chemical composition test and cement compressive strength. The result shows that the higher percentage of limestone added to the cement, the higher the result for residue test and fineness test, but lower result for compressive strength. The highest compressive strength obtained is at 2 days age while the best composition of the blended cement is 77% clinker, 15% limestone, 3% gypsum and 5% blast furnace slag.
Analisis pengaruh bahan dasar terhadap indeks viskositas pelumas berbagai kekentalan Rini Siskayanti; Muhammad Engkos Kosim
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.31147

Abstract

Lubricants are chemicals, which are generally liquid, provided between two moving objects to reduce frictional forces. The lubricant is made from a 70-90% base oil mixture and added with an additive to enhance its properties. Basic lubricants can be grouped into 3 ie mineral lubricants, vegetable lubricants and synthetic lubricants. One of the functions of lubricants is as an engine coolant from heat arising from friction and sealing. Lubricant resistance to temperature changes is strongly influenced by the type of lubricant base material. The purpose of this research is to know the influence of basic material of lubricant to temperature change as measured by Viscosity Index value. Research done by making machine lubricant with various viscosity with addition of same additives, only kind of lubricant that used different but still refers to standard lubricant characteristic tested. Of 5 samples tested were DEO API CI-4 SAE 15W-40, API PCMO SN SAE 10W-40, API MCO SL SAE 10W-30, HO ISO VG 32, TO API TO-4 SAE 10W showed that lubricant using materials Synthetic foundations have higher viscosity index values than minerals (13-30% higher). This indicates that the quality of lubricants is also getting better.
Seleksi isolat bakteri amilolitik dari rhizosfer Canna edulis, Kerr. untuk produksi poli hidroksi alkanoat dari limbah cair tapioka Nurhayati Nurhayati; Ocky Karna Radjasa; Irfan Dwidya Prijambada
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.33194

Abstract

Petrochemical-based plastic waste accumulated in landfills have been posing serious threat to the environment as this kind of plastics are non-biodegradable. Replacing petrochemical-based plastics with biodegradable plastics constitutes a challenging solution both in terms of mechanical design of the process and most importantly the availability of powerful local microorganism for the process. Therefore, the current study was searching for appropriate local microorganisms for poly hydroxyl alkanoate (PHA) production from starch waste, which was considered as one of cheap carbon sources. Waste water of cassava industry is a good resource of such starch waste water. The microbes were isolated from Canna edulis, Kerr. rhizosphere from Cangkringan. The expected isolates were the bacteria enable the coupling of carbon catabolic pathways with PHA anabolic pathways. It was found that ten isolates were able to use waste water of cassava flour industry as carbon source. The PHA quantitative analysis by spectrophotometer showed that the isolate of Bacillus sp. C8 produced the highest PHA of 2,095 g/L. Further FTIR analysis showed specific bands near 1363,67 cm-1, 1641,42 cm-1, 2929,87 cm-1, 3408,22 cm-1 wavelengths which revealed the presence of CH3, ester carbonyl group (C=O), C-H and terminal OH group of PHA.

Page 1 of 1 | Total Record : 8


Filter by Year

2017 2017


Filter By Issues
All Issue Vol 19 No 2 (2025): Volume 19, Number 2, 2025 Vol 19 No 1 (2025): Volume 19, Number 1, 2025 Vol 18 No 2 (2024): Volume 18, Number 2, 2024 Vol 18 No 1 (2024): Volume 18, Number 1, 2024 Vol 17 No 2 (2023): Volume 17, Number 2, 2023 Vol 17 No 1 (2023): Volume 17, Number 1, 2023 Vol 16 No 2 (2022): Volume 16, Number 2, 2022 Vol 16 No 1 (2022): Volume 16, Number 1, 2022 Vol 15 No 2 (2021): Volume 15, Number 2, 2021 Vol 15 No 1 (2021): Volume 15, Number 1, 2021 Vol 14 No 2 (2020): Volume 14, Number 2, 2020 Vol 14 No 1 (2020): Volume 14, Number 1, 2020 Vol 13 No 2 (2019): Volume 13, Number 2, 2019 Vol 13 No 1 (2019): Volume 13, Number 1, 2019 Vol 12 No 2 (2018): Volume 12, Number 2, 2018 Vol 12 No 1 (2018): Volume 12, Number 1, 2018 Vol 11 No 2 (2017): Volume 11, Number 2, 2017 Vol 11 No 1 (2017): Volume 11, Number 1, 2017 Vol 10 No 2 (2016): Volume 10, Number 2, 2016 Vol 10 No 1 (2016): Volume 10, Number 1, 2016 Vol 9 No 2 (2015): Volume 9, Number 2, 2015 Vol 9 No 1 (2015): Volume 9, Number 1, 2015 Vol 8 No 2 (2014): Volume 8, Number 2, 2014 Vol 8 No 1 (2014): Volume 8, Number 1, 2014 Vol 7 No 2 (2013): Volume 7, Number 2, 2013 Vol 7 No 1 (2013): Volume 7, Number 1, 2013 Vol 6 No 2 (2012): Volume 6, Number 2, 2012 Vol 6 No 1 (2012): Volume 6, Number 1, 2012 Vol 5 No 2 (2011): Volume 5, Number 2, 2011 Vol 5 No 1 (2011): Volume 5, Number 1, 2011 Vol 4 No 2 (2010): Volume 4, Number 2, 2010 Vol 4 No 1 (2010): Volume 4, Number 1, 2010 Vol 3 No 2 (2009): Volume 3, Number 2, 2009 Vol 3 No 1 (2009): Volume 3, Number 1, 2009 Vol 2 No 2 (2008): Volume 2, Number 2, 2008 Vol 2 No 1 (2008): Volume 2, Nomor 1, 2008 Vol 1 No 1 (2007): Volume 1, Number 1, 2007 More Issue