Jurnal Rekayasa Proses
Jurnal Rekayasa Proses is an open-access journal published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada as scientific journal to accommodate current topics related to chemical and biochemical process exploration and optimization which covers multi scale analysis from micro to macro and full plant size. Specialization topics covered by Jurnal Rekayasa Proses are: 1. Kinetics and Catalysis Includes simulations and experiments in reaction kinetics, catalyst synthesis and characterization, reactor design, process intensification, microreactor, multiphase reactors, multiscale phenomena, transfer phenomena in multiphase reactors. 2. Separation and Purification System Includes phase equilibrium, mass transfer, mixing and segregation, unit operation, distillation, absorption, extraction, membrane separation, adsorption, ion exchange, chromatography, crystallization and precipitation, supercritical fluids, bioprocess product purification. 3. Process System Engineering Includes simulation, analysis, optimization, and process control on chemical/biochemical processes based on mathematical modeling; multiscale modeling strategy (molecular level, phase level, unit level, and inter-unit integration); design of experiment (DoE); current methods on simulation for model parameter determination. 4. Oil, Gas, and Coal Technology Includes chemical engineering application on process optimization to achieve utmost efficiency in energy usage, natural gas purification, fractionation recovery, CO2 capture, coal liquefaction, enhanced oil recovery and current technology to deal with scarcity in fossil fuels and its environmental impacts. 5. Particle Technology Includes application of chemical engineering concepts on particulate system, which covers phenomenological study on nucleation, particle growth, breakage, and aggregation, particle population dynamic model, particulate fluid dynamic in chemical processes, characterization and engineering of particulate system. 6. Mineral Process Engineering Includes application of chemical engineering concepts in mineral ore processing, liberation techniques and purification, pyrometallurgy, hydrometallurgy, and energy efficiency in mineral processing industries. 7. Material and biomaterial Includes application of chemical engineering concepts in material synthesis, characterization, design and scale up of nano material synthesis, multiphase phenomena, material modifications (thin film, porous materials etc), contemporary synthesis techniques (such as chemical vapor deposition, hydrothermal synthesis, colloidal synthesis, nucleation mechanism and growth, nano particle dispersion stability, etc.). 8. Bioresource and Biomass Engineering Includes natural product processing to create higher economic value through purification and conversion techniques (such as natural dye, herbal supplements, dietary fibers, edible oils, etc), energy generation from biomass, life cycle and economic analysis on bioresource utilization. 9. Biochemistry and Bioprocess Engineering Includes biochemical reaction engineering, bioprocess optimization which includes microorganism selection and maintenance, bioprocess application for waste treatment, bioreactor modeling and optimization, downstream processing. 10. Biomedical Engineering Includes enhancement of cellular productions of enzymes, protein engineering, tissue engineering, materials for implants, and new materials to improve drug delivery system. 11. Energy, Water, Environment, and Sustainability Includes energy balances/audits in industries, energy conversion systems, energy storage and distribution system, water quality, water treatment, water quality analysis, green processes, waste minimization, environment remediation, and environment protection efforts (organic fertilizer production and application, biopesticides, etc.).
Articles
5 Documents
Search results for
, issue
"Vol 3 No 2 (2009): Volume 3, Number 2, 2009"
:
5 Documents
clear
Penentuan rasio optimum campuran CPO: batubara dalam desulfurisasi dan deashing secara flotasi sistem kontinyu
Andi Aladin
Jurnal Rekayasa Proses Vol 3 No 2 (2009): Volume 3, Number 2, 2009
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.567
The problem related to the utilisation of Indonesian coal is the high sulphur and ash contents of the coal which may defect the combustor units and pollute the environment. Flotation is one of the methods to reduce the inorganic sulphur and ash in coal. Research on desulphurisation and deashing of coal from Mallawa (Sulawesi) was performed in a continuous flotation column. Variables which give maximum desulphurisation were studied and covered in this article, e.g. mixing ratio of crude palm oil (CPO) surfactant to coal. It was found that optimum mixing ratio of CPO to coal was 1:4, based on optimum conditions previously determined, i.e. resident time of 60 minutes, air flow rate of 1.22 l/min, pH 6.5 and coal particle size of 169 m. In these optimum conditions, the sulphur content was reduced from 3.3% to 0.93% or 72% sulphur recovery, while the ash content was reduced from 11.25% to 9.75%, the calorific value was maintained at 6000 kcal/kg. The desulphurised and deashed coal meets the specification criteria of the industrial fuel.
Kinetika reaksi pada pembuatan glifosat dari N-PMIDA (neophosphonomethyl iminodiacetic acid) dan H2O2 dengan katalisator Pd/Al2O3
Irmawaty Sinaga;
Edia Rahayuningsih;
I Made Bendiyasa
Jurnal Rekayasa Proses Vol 3 No 2 (2009): Volume 3, Number 2, 2009
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.566
The need of glyphosate in Indonesia is increasing by about 0.75% annually. Nowadays, Indonesia imports the compound from China. In order to decrease the amount of imported glyphosate, it is necessary to produce it locally. This research aims at achieving primary reaction rate of producing glyphosate from neophosphonomethyl iminodiacetic Acid (NPMIDA) and hydrogen peroxide (H2O2), and secondary reaction rate of aminomethylphosphonic acid (AMPA) at various reactant ratios and temperatures. Palladium supported alumina (Pd/Al2O3) was used as catalyst. Five grams of NPMIDA was added into a-500 mL three neck flask, and 85 mL aquadest was poured into it. Then, 1 mL H2O2 was added into the three neck flask every 20 minutes.. The product was vacuum-filtered and reacted with 130 mL ethanol. Separation of glyphosate was performed by filtering and washing it with ethanol and diethyl ether. The purity of glyphosate product was analyzed using UV/Vis spectrometer.
Pemurnian metanol dari kandungan tri methyl amine di PT. Kaltim Methanol Industri – Bontang Kaltim
Imam Karfendi Putro;
Andrian Nugroho;
Nanang Hasanudin
Jurnal Rekayasa Proses Vol 3 No 2 (2009): Volume 3, Number 2, 2009
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.564
PT Kaltim Methanol Industri (KMI) produces grade AA methanol which has a purity of above 99.85%. The overseas customers or consumers of the methanol product require that the methanol should contain trimethylamine (TMA) as low as possible (less then 50 ppb). TMA might be present either in the free form TMA or in the form of acidic coumponds in a solution such as found in the crude methanol. Free TMA has a low boiling point of 3°C (1 atm) and is easily separated from the methanol by distillation. Meanwhile, TMA in the form of acidic compounds is relatively difficult to separate by ordinary distillation. Generally, to eliminate the TMA, NaOH solution is injected to the distillation column. In the distillation column, a high pH (alkaline) will cause the TMA in crude methanol becomes more volatile and therefore be possible to remove it along with the off-gas. The condition of natural gas in the feedstock and the dynamic of the process plant cause the TMA content in the resulting methanol fluctuating. This study aimed at determining the possible causes of the increase of methanol content of TMA in the product either by natural factors or due to changes in the operating conditions prior to the separation process in the distillation unit. The study showed that the increase of CO2 content in the natural gas feedstock would increase the amount of TMA in the crude methanol. Addition of NaOH solution injection to the distillation column would help to decrease the TMA content in the final methanol product.
Bahan bakar padat dari biomassa bambu dengan proses torefaksi dan densifikasi
Azhar Azhar;
Heri Rustamaji
Jurnal Rekayasa Proses Vol 3 No 2 (2009): Volume 3, Number 2, 2009
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.563
Bamboo can be utililized as biomass through torrefaction and densification processes and be used as solid fuel. In the present work, bamboo was cut into pieces followed by torrefaction process in a furnace. The product of the torrefaction process was then milled or ground to produce smooth powder which was then pressed to form briquettes. The resulting briquettes were characterized by determining their calorific value, proximate analysis, ultimate analysis and burning rate. The torrefaction process was successfully carried out in a temperature range of 200-300°C to obtain charcoal that had following properties: brittle, hydrophobic with decreasing moisture content. The experimental results showed that the calorific value was influenced by bamboo briquette density. Greater the density higher the calorific value of the resulting brequettes. In addition, the rate of burning was also determined by the density. The briquettes that had higher density had lower burning rate. The results showed that torrefaction and densification processes could increase carbon content and calorific value of the bamboo brequttes by 19-20% in a temperature range of 200 – 300°C.
Numerical method for front tracking in mold filling modeling in composite injection molding: non-reacting system
Mohammad Fahrurrozi;
John R. Collier
Jurnal Rekayasa Proses Vol 3 No 2 (2009): Volume 3, Number 2, 2009
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.565
Mold filing simulation is important in mold design for liquid composite molding. Cost of commercial software for mold filling simulation is very expensive for average Indonesian companies. Therefore a more affordable simulation program is necessary to promote development of domestic technology related to liquid composite molding. This paper presents 3-dimension mold filling model based on control volume finite difference (CV-FD) numerical method on fixed grids. Front tracking was performed using volume of fluid method (VOF) implemented on CV-FD. Velocity field was computed using Darcy's equation. Computation was implemented on Fortran while contour plot were prepared using Matlab. The developed model predicts well gate pressure obtained experimentally. Since experimental data for front advancement is not available, calculation results were compared with results for other software developed by US’s NIST. The developed model predict front position obtain by the other software quite well.