Jurnal Rekayasa Proses
Jurnal Rekayasa Proses is an open-access journal published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada as scientific journal to accommodate current topics related to chemical and biochemical process exploration and optimization which covers multi scale analysis from micro to macro and full plant size. Specialization topics covered by Jurnal Rekayasa Proses are: 1. Kinetics and Catalysis Includes simulations and experiments in reaction kinetics, catalyst synthesis and characterization, reactor design, process intensification, microreactor, multiphase reactors, multiscale phenomena, transfer phenomena in multiphase reactors. 2. Separation and Purification System Includes phase equilibrium, mass transfer, mixing and segregation, unit operation, distillation, absorption, extraction, membrane separation, adsorption, ion exchange, chromatography, crystallization and precipitation, supercritical fluids, bioprocess product purification. 3. Process System Engineering Includes simulation, analysis, optimization, and process control on chemical/biochemical processes based on mathematical modeling; multiscale modeling strategy (molecular level, phase level, unit level, and inter-unit integration); design of experiment (DoE); current methods on simulation for model parameter determination. 4. Oil, Gas, and Coal Technology Includes chemical engineering application on process optimization to achieve utmost efficiency in energy usage, natural gas purification, fractionation recovery, CO2 capture, coal liquefaction, enhanced oil recovery and current technology to deal with scarcity in fossil fuels and its environmental impacts. 5. Particle Technology Includes application of chemical engineering concepts on particulate system, which covers phenomenological study on nucleation, particle growth, breakage, and aggregation, particle population dynamic model, particulate fluid dynamic in chemical processes, characterization and engineering of particulate system. 6. Mineral Process Engineering Includes application of chemical engineering concepts in mineral ore processing, liberation techniques and purification, pyrometallurgy, hydrometallurgy, and energy efficiency in mineral processing industries. 7. Material and biomaterial Includes application of chemical engineering concepts in material synthesis, characterization, design and scale up of nano material synthesis, multiphase phenomena, material modifications (thin film, porous materials etc), contemporary synthesis techniques (such as chemical vapor deposition, hydrothermal synthesis, colloidal synthesis, nucleation mechanism and growth, nano particle dispersion stability, etc.). 8. Bioresource and Biomass Engineering Includes natural product processing to create higher economic value through purification and conversion techniques (such as natural dye, herbal supplements, dietary fibers, edible oils, etc), energy generation from biomass, life cycle and economic analysis on bioresource utilization. 9. Biochemistry and Bioprocess Engineering Includes biochemical reaction engineering, bioprocess optimization which includes microorganism selection and maintenance, bioprocess application for waste treatment, bioreactor modeling and optimization, downstream processing. 10. Biomedical Engineering Includes enhancement of cellular productions of enzymes, protein engineering, tissue engineering, materials for implants, and new materials to improve drug delivery system. 11. Energy, Water, Environment, and Sustainability Includes energy balances/audits in industries, energy conversion systems, energy storage and distribution system, water quality, water treatment, water quality analysis, green processes, waste minimization, environment remediation, and environment protection efforts (organic fertilizer production and application, biopesticides, etc.).
Articles
5 Documents
Search results for
, issue
"Vol 6 No 1 (2012): Volume 6, Number 1, 2012"
:
5 Documents
clear
Kinetika pelarutan silika amorf dari lumpur panas bumi Dieng
Nurdin Riyanto;
P. Sumardi;
Indra Perdana
Jurnal Rekayasa Proses Vol 6 No 1 (2012): Volume 6, Number 1, 2012
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.2450
Dieng’s geothermal power plant generates not only energy but also wastes as sludge that contains around 50% silica in an amorphous state. The waste has a great potential to be used as a source of micro-amorphous silica synthesis to fulfill industrial needs. This research aimed to study the dissolution kinetics of amorphous silica. In the present work, the alkali – solubilization process by means of the dissolution of amorphous silica in an agitated flask was studied by varying process temperatures (50 – 90 °C), stirring speed (150 – 450 rpm), Na/Si molar ratio (2 – 3), and silica particle size (0,0069 – 0,01975 cm). Experimental results showed that the rate of geothermal silica dissolution increased with temperature and stirring speed. Meanwhile, Na/Si molar ratios and silica particle sizes showed no significant influence on the dissolution process. Calculation results indicated that the dissolution process involved a solid – liquid reaction that occured at the solid surface.
Kajian awal laju reaksi fotosintesis untuk penyerapan gas CO2 menggunakan mikroalga Tetraselmis chuii
Elida Purba;
Ade Citra Khairunisa
Jurnal Rekayasa Proses Vol 6 No 1 (2012): Volume 6, Number 1, 2012
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.2451
The background of the present study was the facts that the increase of carbon dioxides concentration in the air due to industrial activities and fossil fuel combustion certainly leads to global warming. In order to reduce carbon dioxides concentration, photosynthesis reaction using Tetraselmis chuii was one of the potential methods to use. The present study aimed at determining the rate constant of reaction that used Tetraselmis chuii. The study was carried out by firstly saturating sea water as a culture media with carbon dioxide in order to reduce the influence of carbon dioxide diffusion through the media. Microalgae were then put inside the photo-bioreactor at different operating conditions. The operating variables investigated in the present work were temperature (28C, 30C and 35C) and inlet CO2 gas concentration (4, 9 and 14%) with a complete random experimental design. Experimental results showed that the highest absorption capacity was achieved at 30C and 35C for each inlet CO2 concentration. However, the order of reaction with respect to CO2 concentration could not have been determined since the correction factors (R) values obtained from graphical analysis of first, second and third order reactions were not significantly different.
Degradasi substrat volatile solid pada produksi biogas dari limbah pembuatan tahu dan kotoran sapi
Budi Nining Widarti;
Siti Syamsiah;
Panut Mulyono
Jurnal Rekayasa Proses Vol 6 No 1 (2012): Volume 6, Number 1, 2012
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.2452
Waste from tofu production and cow dung are potential organic materials for biogas production based on the content of volatile solid. This study aims to determine the optimal content of volatile solid in a mixture of tofu production waste-cow dung and to obtain the kinetic parameters of the degradation of volatile solid to form biogas. A mixture at certain composition is put into digester. To obtain anaerobic condition, N2 gas is flown into the digester, and then the digester is sealed. The mixture is incubated in a water bath at a temperature of 35oC for 56 days. Biogas volume and pH are measured every day. Methane, volatile fatty acids and volatile solid are analyzed every 7 days. Carbohydrates, proteins and fats in the slurry are analyzed three times during the production of biogas. The results showed that digester with 12% volatile solid produces the highest biogas yield of 89.522 mL/g volatile solid, with the highest methane concentration 14.68%. Kinetics model of degradation of volatile solid can be approached by a first order reaction model.
Studi proses pembuatan biodiesel dari minyak kelapa (coconut oil) dengan bantuan gelombang ultrasonic
Sri Kembaryanti Putri;
Supranto Supranto;
Rahman Sudiyo
Jurnal Rekayasa Proses Vol 6 No 1 (2012): Volume 6, Number 1, 2012
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.2453
Biodiesel is produced by methanolysis of various vegetable oils such as coconut oil, palm oil, seed oil, soybean oil, etc. Coconut oil has the potential as a raw material for making biodiesel due its abundant availability. The use of the ultrasonic waves can increase conversion and reaction rate. The objective of this study was to study the effect of the use of ultrasonic waves on the transesterification of coconut oil, the ratio of reactants, catalyst concentration, and activation of methanol on the reaction conversion. Sodium hydroxide catalyst with a specific weight was dissolved in methanol with a certain volume. After dissolvtion was completed, the reactants including coconut oil with a certain volume were put into the reactor, and reaction was then started. Samples were taken every 10 minute intervals for analysis of fatty acids. The reaction was stopped after 60 minutes. Furthermore, biodiesel was separated from glycerol and purified. Experimental results showed that transesterification of coconut oil could be improved with the help of ultrasonic waves. The obtained conversion was 4 times higher (85,66%) than the conversions generated in the conventional process (20,15%) The process was done in the same condition which was the ratio of reactants of 5 mgek methanol / mgek oil, catalyst 1% by weight oil and the initial reaction temperature of 60C. The greater the ratio of methanol-oil equivalent, the higher reaction conversion is.
Pembuatan zat warna alami dalam bentuk serbuk untuk mendukung industri batik di Indonesia
Paryanto Paryanto;
Agus Purwanto;
Endang Kwartiningsih;
Endang Mastuti
Jurnal Rekayasa Proses Vol 6 No 1 (2012): Volume 6, Number 1, 2012
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.2454
Synthetic dyes are very practical to use and can lead to a striking color on the products. However, synthetic dye effluent may pollute the environment. For this reason, currently natural dyes have been used again for coloring. In order to ease the use of natural dyes, the liquid form of the dyes is dried into powder. In the present study, natural dyes extracted from kesumba seeds were dried using a spray dryer to form a powder. The Kesumba dye was extracted in an alkaline solutions of NaOH and Ca(OH)2. Drying was carried out with a feed having an average rate of 0.13 ml/sec at a temperature of 70°C. Meanwhile, dryer temperature was 120°C. Experimental results showed that extraction using NaOH solution offered better results than that using Ca(OH)2 solution. The extraction using NaOH solution was optimum at NaOH concentration of 0.4 M, temperature of 90°C and duration of 180 min. With this condition, the resulting powder was 19.6 g/L extract solution.