cover
Contact Name
Himawan Tri Bayu Murti Petrus
Contact Email
jurnal.rekpros@ugm.ac.id
Phone
-
Journal Mail Official
jurnal.rekpros@ugm.ac.id
Editorial Address
Jl. Grafika No. 2, Yogyakarta, Indonesia
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Rekayasa Proses
ISSN : 1978287X     EISSN : 25491490     DOI : -
Core Subject : Engineering,
Jurnal Rekayasa Proses is an open-access journal published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada as scientific journal to accommodate current topics related to chemical and biochemical process exploration and optimization which covers multi scale analysis from micro to macro and full plant size. Specialization topics covered by Jurnal Rekayasa Proses are: 1. Kinetics and Catalysis Includes simulations and experiments in reaction kinetics, catalyst synthesis and characterization, reactor design, process intensification, microreactor, multiphase reactors, multiscale phenomena, transfer phenomena in multiphase reactors. 2. Separation and Purification System Includes phase equilibrium, mass transfer, mixing and segregation, unit operation, distillation, absorption, extraction, membrane separation, adsorption, ion exchange, chromatography, crystallization and precipitation, supercritical fluids, bioprocess product purification. 3. Process System Engineering Includes simulation, analysis, optimization, and process control on chemical/biochemical processes based on mathematical modeling; multiscale modeling strategy (molecular level, phase level, unit level, and inter-unit integration); design of experiment (DoE); current methods on simulation for model parameter determination. 4. Oil, Gas, and Coal Technology Includes chemical engineering application on process optimization to achieve utmost efficiency in energy usage, natural gas purification, fractionation recovery, CO2 capture, coal liquefaction, enhanced oil recovery and current technology to deal with scarcity in fossil fuels and its environmental impacts. 5. Particle Technology Includes application of chemical engineering concepts on particulate system, which covers phenomenological study on nucleation, particle growth, breakage, and aggregation, particle population dynamic model, particulate fluid dynamic in chemical processes, characterization and engineering of particulate system. 6. Mineral Process Engineering Includes application of chemical engineering concepts in mineral ore processing, liberation techniques and purification, pyrometallurgy, hydrometallurgy, and energy efficiency in mineral processing industries. 7. Material and biomaterial Includes application of chemical engineering concepts in material synthesis, characterization, design and scale up of nano material synthesis, multiphase phenomena, material modifications (thin film, porous materials etc), contemporary synthesis techniques (such as chemical vapor deposition, hydrothermal synthesis, colloidal synthesis, nucleation mechanism and growth, nano particle dispersion stability, etc.). 8. Bioresource and Biomass Engineering Includes natural product processing to create higher economic value through purification and conversion techniques (such as natural dye, herbal supplements, dietary fibers, edible oils, etc), energy generation from biomass, life cycle and economic analysis on bioresource utilization. 9. Biochemistry and Bioprocess Engineering Includes biochemical reaction engineering, bioprocess optimization which includes microorganism selection and maintenance, bioprocess application for waste treatment, bioreactor modeling and optimization, downstream processing. 10. Biomedical Engineering Includes enhancement of cellular productions of enzymes, protein engineering, tissue engineering, materials for implants, and new materials to improve drug delivery system. 11. Energy, Water, Environment, and Sustainability Includes energy balances/audits in industries, energy conversion systems, energy storage and distribution system, water quality, water treatment, water quality analysis, green processes, waste minimization, environment remediation, and environment protection efforts (organic fertilizer production and application, biopesticides, etc.).
Articles 5 Documents
Search results for , issue "Vol 8 No 1 (2014): Volume 8, Number 1, 2014" : 5 Documents clear
Review model dan parameter interaksi pada korelasi kesetimbangan uap-cair dan cair-cair sistem etanol (1) + air (2) + ionic liquids (3) dalam pemurnian bioetanol Dhoni Hartanto; Bayu Triwibowo
Jurnal Rekayasa Proses Vol 8 No 1 (2014): Volume 8, Number 1, 2014
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.5017

Abstract

Bioethanol is a promising renewable energy resource which can substitute non-renewable energy such as fossil-fuel. Ethanol and water produce azeotropic point in atmospheric pressure condition which can not be separated by ordinary distillation. New class of eco-friendly compounds to be used as entrainer are known as ionic liquids. These ionic liquids are used experimentally in extractive distillation and liquid-liquid extraction. Many researches have been conducted in ethanol (1) + water (2) + ionic liquids (3) systems including vapor-liquid equilibrium (VLE) and liquid-liquid equilibrium (LLE). These researches also produce binary interaction paramaters obtained from equilibrium data correlation using Nonrandom two-liquid (NRTL), Electrolyte-nonrandom two-liquid (e-NRTL), Universal quasi-chemical (UNIQUAC), and Antoine equation. UNIQUAC Functional-group activity coefficients (UNIFAQ) was also used to predict the equilibrium data. Models and binary interaction parameters were used for design, optimization, and control of extractive distillation column and liquid-liquid extraction in bioethanol purification. This paper provides a critical review of models and binary interaction parameters for 43 ethanol (1) + water (2) + ionic liquids (3) systems to obtain appropriate models and binary interaction parameters. Generally, NRTL is the most frequent used model, it is used in 40 systems. NRTL provides satisfactory results in vapor-liquid equilibrium and liquid-liquid equilibrium data correlation due to its characteristics which can correlate well in low pressure polar system. It is shown by small number of root mean square deviation (RMSD) for ∆y and ∆T and average relative deviation (ARD). It can also fit equilibrium data behavior with a good agreement.
Kitosan dari limbah udang sebagai bahan pengawet ayam goreng Ratna Sri Harjanti
Jurnal Rekayasa Proses Vol 8 No 1 (2014): Volume 8, Number 1, 2014
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.5018

Abstract

Shrimp industries have to deal with shell solid waste. On the other hand, this shell solid waste can be utilized to produce citin and citosan. One of the beneficiations of citosan is for food preservation. This ability is based on the existence of poly cation with positive charge that is responsible for the inhibition of bacteria growth. In this study, NaOH was varied to produce citosan from shrimp shell resulting rendemen and deasetilation degree. Deproteination of the shrimp shell was done using NaOH (3,5% b/v) for 2 hours, at temperature of 65°C, while demineralization was conducted using HCl 1 N (1 gram of sample: 15 mL of HCl) for 1 hour at room temperature. Deasetilation was done by heating citin in NaOH with concentration of 30%, 40%, 50%, and 60% b/v for 4 hours at temperature of 100°C. Further, observation on the ability of resulted citosan as food preservation was conducted. Chicken meat was choosen as sample to represent the abundance restaurants selling these product. It has been found that citosan from shrimp shell solid waste can be utilized as food preservation agent for chicken meat without changing the taste and texture of the meat. The optimum condition is 45 minutes with citosan concentration of 2% with deasetilation degree of 70,34%.
Enzymatic hydrolysis of sorghum bagasse to readily fermentable sugar for bioethanol Soeprijanto Soeprijanto; Katherin Indriawati; Nurlita Abdulgani
Jurnal Rekayasa Proses Vol 8 No 1 (2014): Volume 8, Number 1, 2014
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/rekpros.5019

Abstract

Production of sugar from sorghum bagasse using enzyme of cellulase and cellobiase in a batch culture was conducted. The purpose of this experiment was to study of the effect of sorghum baggase loadings and lime pretreatment time on production and yield of sugar. Lime pretreatment was carried out in a 1000 ml three-neck flask with a lime loading of 0.1 g Ca(OH)2 /g sorghum bagasse and added with 500 ml distilled water. Effects of pretreatment time course (1, 2, 3, and 4 h) at temperature of 100°C and biomass loading (5, 10, 15 % w/v) were observed to produce sugar. The results showed that maximum concentration of sugar obtained was 28.04 g/l with a pretreatment time of 4 h; and the maximum yield of sugar obtained was 0.4 g glucose/ g biomass with a biomass loading of 5% (w/v).
Pemanfaatan abu sekam padi pada ozonisasi minyak goreng bekas untuk menghasilkan biodiesel Lieke Riadi; Lanny Sapei; Yosephine Kristiani; Octovania Sugianto
Jurnal Rekayasa Proses Vol 8 No 1 (2014): Volume 8, Number 1, 2014
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.5020

Abstract

Biodiesel is one of the alternatives for the shortage of fossil fuel. In this experiment biodiesel from waste cooking oil which is made using an ozonation process was studied. The process is energy extensive and environmentally friendly because of the use waste cooking oil as a raw material and the experiment was carried out at low reaction temperature which is room temperature. Waste cooking oil was reacted with methanol, KOH as the base catalyst, and ozone that was continually flowed into a stirred reactor at 30oC and atmospheric pressure. The effect of rice hulk ash addition as the supporting catalyst on methyl esters concentrations was observed in this experiment. Two different types of ashes were used, namely black (heating at 350oC) and white (heating at 750oC) with the concentrations of 0.5; 1; 1.5% (w/w). Methyl esters products were characterized using GC apparatus for Short Chain Methyl Ester (SCME) and Long Chain Methyl Ester (LCME) concentrations. They were also analyzed in terms of density and viscosity. The ashes were characterized by XRD and BET. The highest amount of SCME was achieved at the white ash concentration of 1.5%. However, the ash additions seemed not significant on the LCME production. Thus, the white ash was more useful as a supporting catalyst than the black one.
Pemanfaatan LNG sebagai sumber energi di Indonesia Nurhadi Budi Santoso
Jurnal Rekayasa Proses Vol 8 No 1 (2014): Volume 8, Number 1, 2014
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.5021

Abstract

The need of energy supplies in Indonesia, especially on diesel demand is increasing every year. However, this increase could not be fulfilled by national oil based energy supply due to the decrease of oil production and there has not been significant increase in term of oil fractionation plants. As a consequence, diesel import could not be avoided resulting an additional burden in nation budgeting. In order to solve this problem, LNG might be an alternative. Thus, diesel import can be eliminated; furthermore, domestic industries can be more competitive. Although Indonesia is one of the major LNG producers, most of the LNG production is exported to Japan, Korea, and China, but LNG has not been utilized by the society as well as domestic industries. A massive socialization of the utilization of LNG to replace diesel energy should be conducted. Moreover, facilities and infrastructures including transportation, storages, and converter kits have to be built to support this conversion process. Based on the cost saving analysis, the use of dual fuel (diesel and LNG) in a machine could possibly save 20-25% in comparison to that machine using single fuel (diesel).

Page 1 of 1 | Total Record : 5


Filter by Year

2014 2014


Filter By Issues
All Issue Vol 19 No 2 (2025): Volume 19, Number 2, 2025 Vol 19 No 1 (2025): Volume 19, Number 1, 2025 Vol 18 No 2 (2024): Volume 18, Number 2, 2024 Vol 18 No 1 (2024): Volume 18, Number 1, 2024 Vol 17 No 2 (2023): Volume 17, Number 2, 2023 Vol 17 No 1 (2023): Volume 17, Number 1, 2023 Vol 16 No 2 (2022): Volume 16, Number 2, 2022 Vol 16 No 1 (2022): Volume 16, Number 1, 2022 Vol 15 No 2 (2021): Volume 15, Number 2, 2021 Vol 15 No 1 (2021): Volume 15, Number 1, 2021 Vol 14 No 2 (2020): Volume 14, Number 2, 2020 Vol 14 No 1 (2020): Volume 14, Number 1, 2020 Vol 13 No 2 (2019): Volume 13, Number 2, 2019 Vol 13 No 1 (2019): Volume 13, Number 1, 2019 Vol 12 No 2 (2018): Volume 12, Number 2, 2018 Vol 12 No 1 (2018): Volume 12, Number 1, 2018 Vol 11 No 2 (2017): Volume 11, Number 2, 2017 Vol 11 No 1 (2017): Volume 11, Number 1, 2017 Vol 10 No 2 (2016): Volume 10, Number 2, 2016 Vol 10 No 1 (2016): Volume 10, Number 1, 2016 Vol 9 No 2 (2015): Volume 9, Number 2, 2015 Vol 9 No 1 (2015): Volume 9, Number 1, 2015 Vol 8 No 2 (2014): Volume 8, Number 2, 2014 Vol 8 No 1 (2014): Volume 8, Number 1, 2014 Vol 7 No 2 (2013): Volume 7, Number 2, 2013 Vol 7 No 1 (2013): Volume 7, Number 1, 2013 Vol 6 No 2 (2012): Volume 6, Number 2, 2012 Vol 6 No 1 (2012): Volume 6, Number 1, 2012 Vol 5 No 2 (2011): Volume 5, Number 2, 2011 Vol 5 No 1 (2011): Volume 5, Number 1, 2011 Vol 4 No 2 (2010): Volume 4, Number 2, 2010 Vol 4 No 1 (2010): Volume 4, Number 1, 2010 Vol 3 No 2 (2009): Volume 3, Number 2, 2009 Vol 3 No 1 (2009): Volume 3, Number 1, 2009 Vol 2 No 2 (2008): Volume 2, Number 2, 2008 Vol 2 No 1 (2008): Volume 2, Nomor 1, 2008 Vol 1 No 1 (2007): Volume 1, Number 1, 2007 More Issue