cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Atom Indonesia Journal
ISSN : -     EISSN : -     DOI : -
Core Subject : Science,
Exist for publishing the results of research and development in nuclear science and technology Starting for 2010 Atom Indonesia published three times a year in April, August, and December The scope of this journal covers experimental and analytical research in all areas of nuclear science and technology. including nuclear physics, reactor physics, radioactive waste treatment, fuel element development, radioisotopes and radio pharmaceutical engineering, nuclear and radiation safety, neutron scattering, material science and technology, as well as utilization of isotopes and radiation in agriculture, industry, health and environment.
Arjuna Subject : -
Articles 7 Documents
Search results for , issue "Vol 36, No 3 (2010): December 2010" : 7 Documents clear
Force Constants of Cu Crystals from Diffuse Neutron Scattering Measurement T. Sakuma; S.R. Mohapatra; H. Uehara; R. Sakai; Xianglian Xianglian; H. Takahashi; N. Igawa; K. Basar
Atom Indonesia Vol 36, No 3 (2010): December 2010
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (145.615 KB) | DOI: 10.17146/aij.2010.28

Abstract

Diffuse neutron scattering measurement on Cu crystals was performed at 10 K and 300 K. Oscillatory forms were observed in the diffuse scattering intensities. The observed diffuse scattering intensities are analyzed by including the correlation effects among thermal displacements of atoms in the theory. Using the values of correlation effects among neighboring atoms and the values of Debye-Waller temperature parameter, force constants among first, second and third nearest neighboring atoms have been evaluated. The result of correlation effects in Cu crystals are compared to that of ionic crystal and semiconductor. The relation between correlation effects and the inter-atomic distance is not depending much on the crystal binding types. Received: 12 October 2010; Revised: 22 October 2010; Accepted: 16 December 2010
Nuclear Magnetic Resonance Imaging of Li-ion Battery D. Ohno; Y. Iwai; J. Kawamura
Atom Indonesia Vol 36, No 3 (2010): December 2010
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (243.763 KB) | DOI: 10.17146/aij.2010.29

Abstract

Nuclear magnetic resonance (NMR) imaging has high sensitivity to proton (1H) and lithium (7Li). It is a useful measurement for electrolyte in Li-ion battery. 1H NMR images of lithium ion battery which is composed of LiMn2O4 / LiClO4 + propylene carbonate (PC) / Li-metal have been studied. 1H NMR images of electrolyte near cathode material (LiMn2O4) showed anomalous intensity distribution, which was quite inhomogeneous. From NMR images as a function of repetition time (TR), it was concluded that the anomalous intensity distribution was not due to change of relaxation time but an indirect (spatial) para-magnetization effect from cathode material. The paramagnetization induced by high magnetic field distorts linearity of magnetic gradient field, leading to apparent intensity variance. This functional image is an easy diagnostic measurement for magnetization of cathode material, which allows the possibility to check uniformity of cathode material and change of magnetization under electrochemical process. Received: 7 October 2010; Revised: 1 December 2010; Accepted: 17 December 2010
Modelling of Ion Transport in Solids with a General Bond Valence Based Force-Field S. Adams; R.P. Rao
Atom Indonesia Vol 36, No 3 (2010): December 2010
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2010.30

Abstract

Empirical bond length - bond valence relations provide insight into the link between structure of and ion transport in solid electrolytes. Building on our earlier systematic adjustment of bond valence (BV) parameters to the bond softness, here we discuss how the squared BV mismatch can be linked to the absolute energy scale and used as a general Morse-type interaction potential for analyzing low-energy pathways in ion conducting solid or mixed conductors either by an energy landscape approach or by molecular dynamics (MD) simulations. For a wide range of Lithium oxides we could thus model ion transport revealing significant differences to an earlier geometric approach. Our novel BV-based force-field has also been applied to investigate a range of mixed conductors, focusing on cathode materials for lithium ion battery (LIB) applications to promote a systematic design of LIB cathodes that combine high energy density with high power density. To demonstrate the versatility of the new BV-based force-field it is applied in exploring various strategies to enhance the power performance of safe low cost LIB materials (LiFePO4, LiVPO4F, LiFeSO4F, etc.).Received: 11 October 2010; Revised: 26 October 2010; Accepted: 28 October 2010
Diffraction Plane Dependence of Micro Residual Stresses in Uniaxially Extended Carbon Steels T. Hanabusa; A. Shiro; M. Refai; M. Nishida
Atom Indonesia Vol 36, No 3 (2010): December 2010
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2010.31

Abstract

In the stress measurement using X-ray or neutron diffraction, an elastic anisotropy as well as a plastic anisotropy of crystal must be carefully considered. In the X-ray and neutron diffraction stress measurement for polycrystalline materials, a particular {hkl} plane is used in measuring lattice strains. The dependence of an X-ray elastic constant on a diffraction plane is a typical example caused by an elastic anisotropy of the crystal. The yield strength and the work hardening rate of a single crystal depend on a crystallographic direction of the crystal. The difference in the yield strength and the work hardening rate relating to the crystallographic direction develops different residual stresses measured on each {hkl} diffraction after plastic deformation of a polycrystalline material. The present paper describes the result of the neutron stress measurement on uniaxially extended low and middle carbon steels. A tri-axial residual stress state developed in the extended specimens was measured on different kind of {hkl} diffraction plane. The measurement on the {110}, {200} and {211} diffraction showed that residual stresses increased with increasing the plastic elongation and the residual stresses on {110} were compressive, {200} were tensile and those on {211} were the middle of the former two planes. Received: 30 September 2010; Revised: 28 October 2010; Accepted: 1 November 2010
Crystallite Size and Microstrain Measurement of Cathode Material after Mechanical Milling using Neutron Diffraction Technique A. Fajar; Gunawan Gunawan; E. Kartini; H. Mugirahardjo; M. Ihsan
Atom Indonesia Vol 36, No 3 (2010): December 2010
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2010.27

Abstract

The measurements of neutron diffraction patterns of commercially product and 10 hour mechanically milled cathode material lithium cobaltites (LiCoO2) have been performed. Rietveld analysis using FullProf does not show the change of crystal structure due to milling process, but the diffraction pattern has a lower intensity and the diffraction-line was broadening. The results of line-broadening study on milled sample using Rietveld methods detected that the microstrain was occurred in the sample with value 0.127080(35) % and the average crystallite size was 424.78(20) Å.Received: 7 October 2010; Revised: 31 October 2010; Accepted: 1 November 2010
New Analytical Methods for the Surface/ Interface and the Micro-Structures in Advanced Nanocomposite Materials by Synchrotron Radiation K. Nakamae; J. Matsui; K. Yokoyama; Y. Urushihara; S. Kuwamoto; L. Li; S. Takeda
Atom Indonesia Vol 36, No 3 (2010): December 2010
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2010.32

Abstract

Analytical methods of surface/interface structure and micro-structure in advanced nanocomposite materials by using the synchrotron radiation are introduced. Recent results obtained by the energy-tunable and highly collimated brilliant X-rays, in-situ wide angle/small angle X-ray diffraction with high accuracy are reviewed. It is shown that small angle X-ray scattering is one of the best methods to characterize nanoparticle dispersibility, filler aggregate/agglomerate structures and in-situ observation of hierarchical structure deformation in filled rubber under cyclic stretch. Grazing Incidence(small and wide angle) X-ray Scattering are powerful to analyze the sintering process of metal nanoparticle by in-situ observation as well as the orientation of polymer molecules and crystalline orientation at very thin surface layer (ca 7nm) of polymer film. While the interaction and conformation of adsorbed molecule at interface can be investigated by using high energy X-ray XPS with Enough deep position (ca 9 micron m).Received: 11 October 2010; Revised: 13 December 2010; Accepted: 23 December 2010
A New Possibility of Dynamical Study on Solid State Ionic Materials by Inelastic Neutron Scattering M. Nakamura; K. Nakajima; Y. Inamura; S. Ohira Kawamura; T. Kikuchi; T. Otomo; M. Arai
Atom Indonesia Vol 36, No 3 (2010): December 2010
Publisher : PPIKSN-BATAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/aij.2010.33

Abstract

A new technique of inelastic neutron scattering measurement utilizing the multiple incident energies is applied to the dynamical study of vitreous silica. A wide variety of extracted information from a series of two-dimensional maps of dynamical structure factor with multiple different incident energies are greatly valuable. The applicability and its expected contribution of new experimental technique into the further progress of scientific activities in solid state ionic materials are discussed.Received: 30 September 2010; Revised: 25 October 2010; Accepted: 26 October 2010

Page 1 of 1 | Total Record : 7


Filter by Year

2010 2010


Filter By Issues
All Issue VOL 49, NO 2 (2023): AUGUST 2023 VOL 49, NO 1 (2023): APRIL 2023 Vol 48, No 3 (2022): December 2022 Vol 48, No 2 (2022): August 2022 Vol 48, No 1 (2022): April 2022 Vol 47, No 3 (2021): December 2021 Vol 47, No 2 (2021): August 2021 Vol 47, No 1 (2021): April 2021 Vol 46, No 3 (2020): December 2020 Vol 46, No 2 (2020): August 2020 Vol 46, No 1 (2020): April 2020 Vol 45, No 3 (2019): December 2019 Vol 45, No 2 (2019): August 2019 Vol 45, No 1 (2019): April 2019 Vol 44, No 3 (2018): December 2018 Vol 44, No 2 (2018): August 2018 Vol 44, No 1 (2018): April 2018 Vol 43, No 3 (2017): December 2017 Vol 43, No 2 (2017): August 2017 Vol 43, No 1 (2017): April 2017 Vol 42, No 3 (2016): December 2016 Vol 42, No 2 (2016): August 2016 Vol 42, No 1 (2016): April 2016 Vol 41, No 3 (2015): December 2015 Vol 41, No 2 (2015): August 2015 Vol 41, No 1 (2015): April 2015 Vol 40, No 3 (2014): December 2014 Vol 40, No 2 (2014): August 2014 Vol 40, No 1 (2014): April 2014 Vol 39, No 3 (2013): December 2013 Vol 39, No 2 (2013): August 2013 Vol 39, No 1 (2013): April 2013 Vol 38, No 3 (2012): December 2012 Vol 38, No 2 (2012): August 2012 Vol 38, No 1 (2012): April 2012 Vol 37, No 3 (2011): December 2011 Vol 37, No 2 (2011): August 2011 Vol 37, No 1 (2011): April 2011 Vol 36, No 3 (2010): December 2010 Vol 36, No 2 (2010): August 2010 Vol 36, No 1 (2010): April 2010 Vol 35, No 2 (2009): July 2009 Vol 35, No 1 (2009): January 2009 Vol 34, No 2 (2008): July 2008 Vol 34, No 1 (2008): January 2008 Vol 33, No 2 (2007): July 2007 Vol 33, No 1 (2007): January 2007 Vol 32, No 2 (2006): July 2006 Vol 32, No 1 (2006): January 2006 Vol 31, No 2 (2005): July 2005 Vol 31, No 1 (2005): January 2005 Vol 30, No 2 (2004): July 2004 Vol 30, No 1 (2004): January 2004 More Issue