cover
Contact Name
Wulandari
Contact Email
jurnal.lemigas@esdm.go.id
Phone
+6221-7394422
Journal Mail Official
jurnal.lemigas@esdm.go.id
Editorial Address
Jl. Ciledug Raya Kav. 109, Cipulir, Kebayoran Lama, Jakarta Selatan 12230
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Scientific Contributions Oil and Gas
Published by LEMIGAS
ISSN : 20893361     EISSN : 25410520     DOI : -
The Scientific Contributions for Oil and Gas is the official journal of the Testing Center for Oil and Gas LEMIGAS for the dissemination of information on research activities, technology engineering development and laboratory testing in the oil and gas field. Manuscripts in English are accepted from all in any institutions, college and industry oil and gas throughout the country and overseas.
Articles 5 Documents
Search results for , issue "Vol 31 No 1 (2008)" : 5 Documents clear
Mitigation Of Carbon Dioxide And Green House Gas Emission From Oil And Gas Industry In Indonesia D.A Ismukurnianto
Scientific Contributions Oil and Gas Vol 31 No 1 (2008)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.31.1.856

Abstract

International concern is now focused on reducing green house gas (GHG) emissions which drive climate change. The use of fossil fuels, either flaring natural gas and burning fossil fuels, are predicted contributing GHG emissions. As a consequence, International cooperation through United Nation Framework Convention on Climate Change (UNFCCC) has pointed to increase policy interest in developing CO2 and GHG emission trading system. The system would allow the countries who have opportunities to reduce CO2 and GHG emission (generally developing countries) and sell or trade GHG emission reduction to the countries (generally developed countries). The second part of this paper will be emphasized on oil and gas reserves, production, refineries,and utilization. Indonesia oil resource as of January 1st, 2006 amounts to about 56.60 BBO, while gas resources as of January 1st, 2006 is about 334.5 TSCF. Indonesia has nine refineries owned by PT Pertamina (Persero) and six refineries owned by private. Indonesia has also voluntary participated in reducing GHG emissions by formulating energy policy, doing research on carbon capture and storage (CCS), and developing innovative projects. This paper will highlight the energy policy, research program and innovative projects for reducing GHG emission from oil and gas activities in Indonesia
Isoprenoid Hydrocarbons As Fingerprints For Identification Of Spill Oils In Indonesian Marine Environment R Desrina
Scientific Contributions Oil and Gas Vol 31 No 1 (2008)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.31.1.857

Abstract

Along with the increasing transport of crude oils to the refinery sites, many accidents of oil spills have been occurred in Indonesian waters. Such spills might be purely an accident but some others are suspected to be deliberately spilled. Nevertheless, both cases need an identification system to trace back the spill source and eventually the spill data can be brought to the court as an evident. Previously, the identification system was conducted through a pattern recognition of n-paraffin hydrocarbons of crude oil samples which are very distinguished from their gas chromatographic (GC) pattern of n-C17, Pristane, n-C18, Phytane, and other nparaffin’s down to n-C30. Unfortunately, some crude oils have similar pattern that matching of two chromatograms could give an ambiguity result. Pattern recognition of isoprenoid hydrocarbons have been developed to characterized crude oils that potentially pollute the Indonesian waters. Differing from the n-paraffin that each hydrocarbon peak can be determined definitely, the developed method does not need to identify each of the isoprenoid hydrocarbons, instead pattern of their chromatographic separation are sufficiently distinguished. GC isoprenoid pattern recognition is made from the isoprenoid peaks that emerge between n-C17 and n- 18. It two crude oils having similar pattern of n-paraffin’s show very distinct pattern of iso-paraffin’s. The method thus can be used as complimentary step in matching the GC pattern of crude oil samples . Although in some cases GC isoprenoid peaks are not completely separated, this would not be disadvantages since their retention time and area can be measured and integrated definitely, respectively. Nevertheless, the separation of iso-paraffin peaks can be easily conducted using a recent GC method namely a comprehensive two dimensional gas chromatography (GCxGC), a method which is recommended to be implemented further in this research.
The Use Of Laboratory Tests To Study Oil Content In Injection Water Which Tend To Form Emulsion Block And Can Cause Plugging In Reservoir Rock Tjuwati Makmur
Scientific Contributions Oil and Gas Vol 31 No 1 (2008)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.31.1.858

Abstract

Oil content plays important role in determining injection water quality before the injection water is injected into reservoir for water flooding need. Determination of oil contents laboratory tests were carried out on five injection water samples from different gathering stations. The results of tests show that two of five injection water samples contain oil contents which fulfill MIGAS guidelines (25 ppm) requirements specification. Whereas, oil contents in the three injection water samples are in a range of 38.00 ppm and 77.00 ppm. The values of oil contents exceed MIGAS guidelines and tend to form emulsion block and cause the occurrence of plugging in reservoir rock.
Nuclear Heat Utilization For Natural Gas Steam Reforming To Produce Hydrogen Djati H Salimy
Scientific Contributions Oil and Gas Vol 31 No 1 (2008)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.31.1.859

Abstract

The assessment of nuclear heat utilization for natural gas steam reforming to produce hydrogen has been carried out. Most of hydrogen production in the world, is produced by steam reforming of natural gas. This process is an endothermic reaction at high temperature that needs a huge amount of heat energy to proceed the reaction. Conventionally, the heat energy needed is supplied by direct burning of fossil fuel. If the huge amount of those heat energy can be substituted by nuclear process heat, some advantages can be obtained such as, reducing combustion of fossil fuels that give implication of significant decreasing of CO2 emission to the environment. On application of nuclear process heat to steam reforming of natural gas, there are some inferior conditions related to the limitation of temperature and pressure provided by nuclear reactor which directly gives impact on lower thermal efficiency (~50%) compared to the fossil-fuelled plant (80-85%). Some modification design and operation of reformer can improve the lack condition, and capable to increase the thermal efficiency of nuclear heated natural gas steam reformer become about 78%.
Comparison Of Local And Import Sands Quality Laboratory Tests Results For Used In Hydraulic Fracturing Operations Tjuwati M; Panca Wahyudi; Supriyatno Supriyatno
Scientific Contributions Oil and Gas Vol 31 No 1 (2008)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.31.1.860

Abstract

Sand quality laboratory tests have been carried out on local and import uncoated sands. Based on results of sand sieve, roundness, sphericity, turbidity, acid solubility and crush resistance at 3000 psi quality tests of import uncoated sand has better quality than local sand. The import sand fulfills API – RP 56 specification requirements and will be able used in hydraulic fracturing operation. Whereas, the local uncoated sand does not achieve API - RP 56 specification requirements.

Page 1 of 1 | Total Record : 5


Filter by Year

2008 2008


Filter By Issues
All Issue Vol 49 No 1 (2026) Vol 48 No 4 (2025) Vol 48 No 3 (2025) Vol 48 No 2 (2025) Vol 48 No 1 (2025) Vol 47 No 3 (2024) Vol 47 No 2 (2024) Vol 47 No 1 (2024) Vol 46 No 3 (2023) Vol 46 No 2 (2023) Vol 46 No 1 (2023) Vol 45 No 3 (2022) Vol 45 No 2 (2022) Vol 45 No 1 (2022) Vol 44 No 3 (2021) Vol 44 No 2 (2021) Vol 44 No 1 (2021) Vol 43 No 3 (2020) Vol 43 No 2 (2020) Vol 43 No 1 (2020) Vol 42 No 3 (2019) Vol 42 No 2 (2019) Vol 42 No 1 (2019) Vol 41 No 3 (2018) Vol 41 No 2 (2018) Vol 41 No 1 (2018) Vol 40 No 3 (2017) Vol 40 No 2 (2017) Vol 40 No 1 (2017) Vol 39 No 3 (2016) Vol 39 No 2 (2016) Vol 39 No 1 (2016) Vol 38 No 3 (2015) Vol 38 No 2 (2015) Vol 38 No 1 (2015) Vol 37 No 3 (2014) Vol 37 No 2 (2014) Vol 37 No 1 (2014) Vol 36 No 3 (2013) Vol 36 No 2 (2013) Vol 36 No 1 (2013) Vol 35 No 3 (2012) Vol 35 No 2 (2012) Vol 35 No 1 (2012) Vol 34 No 3 (2011) Vol 34 No 2 (2011) Vol 34 No 1 (2011) Vol 33 No 3 (2010) Vol 33 No 2 (2010) Vol 33 No 1 (2010) Vol 32 No 3 (2009) Vol 32 No 2 (2009) Vol 32 No 1 (2009) Vol 31 No 3 (2008) Vol 31 No 2 (2008) Vol 31 No 1 (2008) Vol 30 No 3 (2007) Vol 30 No 2 (2007) Vol 30 No 1 (2007) Vol 29 No 3 (2006) Vol 29 No 2 (2006) Vol 29 No 1 (2006) Vol 28 No 3 (2005) Vol 28 No 2 (2005) Vol 28 No 1 (2005) Vol 27 No 3 (2004) Vol 27 No 2 (2004) Vol 27 No 1 (2004) Vol 26 No 2 (2003) Vol 26 No 1 (2003) Vol 25 No 3 (2002) Vol 25 No 2 (2002) Vol 25 No 1 (2002) Vol 24 No 2 (2001) Vol 24 No 1 (2001) Vol 23 No 3 (2000) Vol 23 No 2 (2000) Vol 23 No 1 (2000) Vol 22 No 2 (1999) Vol 22 No 1 (1999) Vol 21 No 2 (1998) Vol 21 No 1 (1998) Vol 18 No 2 (1995) Vol 18 No 1 (1995) Vol 17 No 1 (1994) Vol 16 No 1 (1993) Vol 15 No 1 (1992) Vol 14 No 2 (1991) Vol 14 No 1 (1991) Vol 13 No 1 (1990) Vol 12 No 1 (1989) Vol 11 No 1 (1988) Vol 10 No 3 (1987) Vol 10 No 2 (1987) Vol 10 No 1 (1987) Vol 9 No 1 (1986) Vol 8 No 2 (1985) Vol 8 No 1 (1985) Vol 7 No 2 (1984) Vol 7 No 1 (1984) Vol 6 No 1 (1983) Vol 5 No 2 (1982) Vol 5 No 1 (1982) More Issue