cover
Contact Name
Wulandari
Contact Email
jurnal.lemigas@esdm.go.id
Phone
+6221-7394422
Journal Mail Official
jurnal.lemigas@esdm.go.id
Editorial Address
Jl. Ciledug Raya Kav. 109, Cipulir, Kebayoran Lama, Jakarta Selatan 12230
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Scientific Contributions Oil and Gas
Published by LEMIGAS
ISSN : 20893361     EISSN : 25410520     DOI : -
The Scientific Contributions for Oil and Gas is the official journal of the Testing Center for Oil and Gas LEMIGAS for the dissemination of information on research activities, technology engineering development and laboratory testing in the oil and gas field. Manuscripts in English are accepted from all in any institutions, college and industry oil and gas throughout the country and overseas.
Articles 5 Documents
Search results for , issue "Vol 46 No 1 (2023)" : 5 Documents clear
PRODUCTION FORECASTING USING ARPS DECLINE CURVE MODEL WITH THE EFFECT OF ARTIFICIAL LIFT INSTALLATION Farrah Maurenza; Amega Yasutra; Iswara Lumban Tungkup
Scientific Contributions Oil and Gas Vol 46 No 1 (2023)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.46.1.1310

Abstract

There are many methods for predicting the production performance of oil wells, using the simplest method by looking at the declining trend of production, such as Decline Curve Analysis (DCA), Material Balanced, or using reservoir simulations. Each of these methods has its advantages and disadvantages. The DCA method, the Arps method, is often used in production forecast analysis to predict production performance and estimate remaining reserves. However, the limitation of this method is that if the production system changes, the trend of decline will also change. At the same time, the application in the field of taking the trend of decreasing production does not pay attention to changes in the production system. This study aims to see that changes in the well production system will affect the downward trend of well production, estimated ultimate recovery (EUR) value, and well lifetime. To see the effect of these changes, the initial data tested used the results of reservoir simulations and field data. From the evaluation results, it is found that if the production system changes during the production time, for example, from changing natural flow using artificial lifting assistance, the trend taken from the production profile will follow the behaviour of the reservoir if the trend is taken in the last system from the production profile, not from the start of production. If the downward trend is taken without regard to the changing system, then the prediction results will not be appropriate
The Effect Of Acid Strength Of Bronsted Acid Site On The Ability Of The Catalyst To Break The Carbon Chain Bonds Of 1-Octadekenes Into Alkanes And Short Chain Alkenes As A Substitute For Fossil Fuels Donatus Setyawan Purwo Handoko; Triyono Triyono
Scientific Contributions Oil and Gas Vol 46 No 1 (2023)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.46.1.1311

Abstract

Research has been carried out on the strength of acids on their ability to break carbon chain bonds. The preparation of the zeolite catalyst includes soaking the zeolite in distilled water for 24 hours, followed by calcination and oxidation, then followed by reduction. Further acid treatment with 6 M HCl. Then followed by washing with H2O until neutral pH (pH = 7), then dried in an oven with a temperature of 105 oC, then after becoming a zeolite catalyst used in the cracking reaction of 1-octadekenes into alkanes and short chain alkenes.The results obtained are as follows for the type of zeolite catalyst with code Z having a very low acidity level of 3.15 mmol NH3/mgZeolite, then the zeolite has been modified by a calcination process for 24 hours given the code ZCA which shows a moderate acidity level of 5, 76 mmol NH3/mg Zeolite, then the catalyst with the code ZCAO is zeolite which has been calcified and oxidized and shows a yield of 9.54 mmol NH3/mg Zeolite. Catalytic hydrocracking of 1-octadecene with ZCAO catalyst at a variation of the hydrogen flow rate of 20 mL/minute and a temperature of 450 oC resulted in alkanes and alkenes < C12 which was 15.29% maximum, followed by a hydrogen flow rate of 10 mL/minute at temperatures of 500 and 400 oC. 
Techno-Economic Solution For Extending Ccus Application In Natural Gas Fields: A Case Study Of B Gas Field In Indonesia Prasandi Abdul Aziz; Mohammad Rachmat; Steven Chandra; Wijoyo Niti Daton; Brian Tony
Scientific Contributions Oil and Gas Vol 46 No 1 (2023)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.46.1.1321

Abstract

The application of carbon trading has been applied since 2005 in Northern America, has been adapted in Indonesia with pilot scale implementation namely as Carbon Capture and Storage. One of the biggest issue is the lack of financial incentive in conducting the CCS. Therefore, Carbon Capture, Utilization and Storage (CCUS) serves as an alternative to increase the economic value of the injected CO2. This study presents a new approach of CCUS studied in B Field in Indonesia, a natural gas producer with high CO2 and H2S content. By injecting CO2 as a mean of pressure maintenance, 5.8% of incremental gas production is achieved whilst being able to sequester 2.7 million tonnes of CO2 for 10 years operation. This study should become a pioneer in continuing researches related to enhanced CCS methods by increasing the value of CO2 as well as reducing dependency in expensive chemical EOR injection in the future
Heterogeneity Effect on Polymer Injection: a Study of Sumatra Light Oil Romal Ramadhan; Adi Novriansyah; Tomi Erfando; Suparit Tangparitkul; Arik Daniati; Asep Kurnia Permadi; Muslim Abdurrahman
Scientific Contributions Oil and Gas Vol 46 No 1 (2023)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.46.1.1334

Abstract

The production of oil and gas is heavily dependent on the heterogeneity of the reservoir. Optimizing the production plan and maximizing recovery from the reservoir depends on an understanding of how heterogeneity affects fluid flow and recovery. Techniques such as water flooding and polymer flooding were used to increase oil production from reservoirs while evaluating the impact of reservoir heterogeneity. Numerical simulations in homogeneous and heterogeneous models were performed in this research to identify the optimal operational parameters that will optimize oil recovery and assess the effect of heterogeneity in the reservoir on the recovery factor of the reservoir. The result showed that the homogeneous model obtained 59.86% of the oil recovery factor, while the heterogeneous reservoirs for Lk = 0.2, 0.4, and 0.6 resulted from 45.83%, 69.27%, and 80.46% of oil recovery after twenty years of production, respectively. The heterogeneous reservoir with Lk = 0.6 indicated the highest sweep efficiency compared to other scenarios, while the reservoir with Lk = 0.2 showed the lowest sweep efficiency
The Potential of Remote Sensing Data for Oil and Gas Exploration in Indonesia: a Review Tri Muji Susantoro; Suliantara Suliantara; Agung Budi Harto; Herru Lastiadi Setiawan; Gatot Nugroho; Danang Surya Candra; Adis Jayati; Sayidah Sulma; M Rokhis Khomarudin; Rahmat Arief; Ahmat Maryanto; Yohanes Fridolin Hestrio; Kurdianto Kurdianto
Scientific Contributions Oil and Gas Vol 46 No 1 (2023)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.46.1.1346

Abstract

Oil and gas are important commodities in Indonesia and remain the main source for energy in various sectors. Therefore, the government aim to produce 1 million barrels of oil per day (BOPD) by 2030. To achieve this goal, exploration work is needed to discover new reserves and maintain production in existing fields. This study reviews the experience of oil and gas exploration in Indonesia using remote sensing data and the potential of using remote sensing data for oil and gas exploration through surface anomalies. Surface anomalies are changes or deviations that occur on the surface as the result of the presence of oil and gas underneath. These anomalies included vegetation growing stunted, yellowing or dying, changes in the quantity and composition of clay minerals, iron oxide, increased concentrations of hydrocarbons, helium, radon, carbon dioxide, microbes, and the presence of paraffin dirt formation, as well as geomorphological changes. This study aims to assess and explain the capabilities of remote sensing data in Indonesia for oil and gas exploration. The results show that remote sensing can be used for the initial exploration of oil and gas by delineating areas of potential oil and gas traps based on topographical anomalies and geological mapping integrated with gravity data and increasing confidence in the presence of oil and gas in the subsurface based on surface anomalies. These results are expected that the usefulness of remote sensing can be used to support oil and gas exploration in Indonesia and can be recognized and used for oil and gas activities by utilizing existing methods and discovering methods for data processing and their applications.

Page 1 of 1 | Total Record : 5


Filter by Year

2023 2023


Filter By Issues
All Issue Vol 49 No 1 (2026) Vol 48 No 4 (2025) Vol 48 No 3 (2025) Vol 48 No 2 (2025) Vol 48 No 1 (2025) Vol 47 No 3 (2024) Vol 47 No 2 (2024) Vol 47 No 1 (2024) Vol 46 No 3 (2023) Vol 46 No 2 (2023) Vol 46 No 1 (2023) Vol 45 No 3 (2022) Vol 45 No 2 (2022) Vol 45 No 1 (2022) Vol 44 No 3 (2021) Vol 44 No 2 (2021) Vol 44 No 1 (2021) Vol 43 No 3 (2020) Vol 43 No 2 (2020) Vol 43 No 1 (2020) Vol 42 No 3 (2019) Vol 42 No 2 (2019) Vol 42 No 1 (2019) Vol 41 No 3 (2018) Vol 41 No 2 (2018) Vol 41 No 1 (2018) Vol 40 No 3 (2017) Vol 40 No 2 (2017) Vol 40 No 1 (2017) Vol 39 No 3 (2016) Vol 39 No 2 (2016) Vol 39 No 1 (2016) Vol 38 No 3 (2015) Vol 38 No 2 (2015) Vol 38 No 1 (2015) Vol 37 No 3 (2014) Vol 37 No 2 (2014) Vol 37 No 1 (2014) Vol 36 No 3 (2013) Vol 36 No 2 (2013) Vol 36 No 1 (2013) Vol 35 No 3 (2012) Vol 35 No 2 (2012) Vol 35 No 1 (2012) Vol 34 No 3 (2011) Vol 34 No 2 (2011) Vol 34 No 1 (2011) Vol 33 No 3 (2010) Vol 33 No 2 (2010) Vol 33 No 1 (2010) Vol 32 No 3 (2009) Vol 32 No 2 (2009) Vol 32 No 1 (2009) Vol 31 No 3 (2008) Vol 31 No 2 (2008) Vol 31 No 1 (2008) Vol 30 No 3 (2007) Vol 30 No 2 (2007) Vol 30 No 1 (2007) Vol 29 No 3 (2006) Vol 29 No 2 (2006) Vol 29 No 1 (2006) Vol 28 No 3 (2005) Vol 28 No 2 (2005) Vol 28 No 1 (2005) Vol 27 No 3 (2004) Vol 27 No 2 (2004) Vol 27 No 1 (2004) Vol 26 No 2 (2003) Vol 26 No 1 (2003) Vol 25 No 3 (2002) Vol 25 No 2 (2002) Vol 25 No 1 (2002) Vol 24 No 2 (2001) Vol 24 No 1 (2001) Vol 23 No 3 (2000) Vol 23 No 2 (2000) Vol 23 No 1 (2000) Vol 22 No 2 (1999) Vol 22 No 1 (1999) Vol 21 No 2 (1998) Vol 21 No 1 (1998) Vol 18 No 2 (1995) Vol 18 No 1 (1995) Vol 17 No 1 (1994) Vol 16 No 1 (1993) Vol 15 No 1 (1992) Vol 14 No 2 (1991) Vol 14 No 1 (1991) Vol 13 No 1 (1990) Vol 12 No 1 (1989) Vol 11 No 1 (1988) Vol 10 No 3 (1987) Vol 10 No 2 (1987) Vol 10 No 1 (1987) Vol 9 No 1 (1986) Vol 8 No 2 (1985) Vol 8 No 1 (1985) Vol 7 No 2 (1984) Vol 7 No 1 (1984) Vol 6 No 1 (1983) Vol 5 No 2 (1982) Vol 5 No 1 (1982) More Issue