cover
Contact Name
Utama Alan Deta
Contact Email
utamadeta@unesa.ac.id
Phone
+628993751753
Journal Mail Official
jpfa@unesa.ac.id
Editorial Address
Fakultas Matematika dan Ilmu Pengetaahuan Alam Jl. Ketintang, Gd C3 Lt 1, Surabaya 60231
Location
Kota surabaya,
Jawa timur
INDONESIA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA)
ISSN : 20879946     EISSN : 24771775     DOI : https://doi.org/10.26740/jpfa
Core Subject : Science, Education,
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) is available for free (open access) to all readers. The articles in JPFA include developments and researches in Physics Education, Classical Physics, and Modern Physics (theoretical studies, experiments, and its applications), including: Physics Education (Innovation of Physics Learning, Assessment and Evaluation in Physics, Media of Physics, Conception and Misconceptions in Physics, hysics Philosophy anPd Curriculum, and Psychology in Physics Education); Instrumentation Physics and Measurement (Sensor System, Control System, Biomedical Engineering, Nuclear Instrumentation); Materials Science (Synthesis and Characteristic Techniques, Advanced Materials, Low Temperature Physics, and Exotic Material); Theoretical and Computational Physics (High Energy Physics, Gravitation and Cosmology, Astrophysics, Nuclear and Particle Phenomenology, and Computational and Non-Linear Physics); and Earth Sciences (Geophysics and Astronomy).
Articles 14 Documents
Search results for , issue "Vol 7, No 2 (2017)" : 14 Documents clear
Acknowledgment JPFA Vol 7 No 2 December 2017 JPFA, Editor
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol 7, No 2 (2017)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v7n2.pxii-xiii

Abstract

THE IMPROVEMENT OF STUDENTS’ SCIENTIFIC LITERACY THROUGH GUIDED INQUIRY LEARNING MODEL ON FLUID DYNAMICS TOPIC Arifin, Lina; Sunarti, Titin
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol 7, No 2 (2017)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v7n2.p68-78

Abstract

This research was aimed to improve the students’ scientific literacy through guided inquiry learning model on Fluid Dynamics material. The type of research was pre-experimental design with one group pre-test and post-test design that used 1 experimental class and 2 replication classes. The data analyzed was the learnig implementation, scientific literacy aspects, and students’ responses. The result of this research shows that: (1) the implementation of guided inquiry learning model to improve students’ scientific literacy was done well and in accordance with the learning syntax; (2) there was an increase in the scientific literacy of high category in competency aspect that was in the competency to interpret data and scientific evidence. In addition, in the other aspects that were procedural knowledge aspect, local context aspect, and attitude of science interest aspect; and (3) the students’ responses showed very good category. The implementation of guided inquiry learning model can increase students’ scientific literacy level.
FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG Surbakti, Tukiran; Imron, Mochammad
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol 7, No 2 (2017)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v7n2.p89-101

Abstract

The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor) type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN) and the IAEA (International Atomic Energy Agency). In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92), all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.
DETERMINATION OF THE DIRECTION OF HOT FLUID FLOW IN CANGAR AREA, ARJUNO-WELIRANG VOLCANO COMPLEX, EAST JAVA USING SELF POTENTIAL METHOD Nuha, Dafiqiy Ya'lu Ulin; Maryanto, Sukir; Santoso, Didik Rahardi
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol 7, No 2 (2017)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v7n2.p123-132

Abstract

Research with self potential method has been done in Cangar area of Arjuno-Welirang volcano complex, East Java. The purpose of this study was determined the direction of hot fluid flow.  This hot fluid forms a geothermal manifestation of hot springs. Data acquisition has been done using fixed electrode configuration with interval 5 meters in 5 lines. In this configuration there are two porous pot electrodes, one of them set in fixed station and the other as mobile station. Based on the potential distribution value of the isopotential map, the lowest potential value about -54,5 mV and the highest value about 89,4 mV, so that in Cangar area can predicted the direction of hot fluid flow from southeast to northwest. Based on the results of this research in the direction of hot fluid flow can provide information about hydrothermal system in Cangar area for study of geothermal potential of Arjuno-Welirang Volcano complex, East Java

Page 2 of 2 | Total Record : 14