cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jurtdm@batan.go.id
Editorial Address
Pusat Teknologi dan Keselamatan Reaktor Nukir (PTKRN) Badan Tenaga Nuklir Nasional (BATAN) Gedung 80 Kawasan Puspiptek Setu - Tangerang Selatan Banten - Indonesia (15310)
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega
ISSN : 1411240X     EISSN : 25279963     DOI : -
Core Subject : Science,
Jurnal Teknologi Reaktor Nuklir "TRI DASA MEGA" adalah forum penulisan ilmiah tentang hasil kajian, penelitian dan pengembangan tentang reaktor nuklir pada umumnya, yang meliputi fisika reaktor, termohidrolika reaktor, teknologi reaktor, instrumentasi reaktor, operasi reaktor dan lain-lain yang menyangkut reaktor nukli. Frekuensi terbit tiga (3) kali setahun setiap bulan Februari, Juni dan Oktober.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 12, No 3 (2010): Oktober 2010" : 5 Documents clear
ANALISIS FAKTOR PUNCAK DAYA TERAS RSG-GAS BERBAHAN BAKAR U3Si2-Al 4,8 gU/cc DENGAN KAWAT KADMIUM Jati Susilo; Endiah Pudjihastuti
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 3 (2010): Oktober 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (267.876 KB)

Abstract

Untuk meningkatkan kinerja teras RSG-GAS, maka telah dilakukan penelitian tentang penggunaan bahan bakar U3Si2-Al kerapatan 4,8 gU/cc. Penggunaan bahan bakar tersebut dapat meningkatkan panjang siklus operasi dari 20 menjadi 49 hari. Sehingga reaktor beroperasi lebih efisien. Selain itu juga akan menaikkan reaktivitas lebih teras yang berakibat pada nilai reaktivitas batang kendali saat one stuck rod menjadi positif. Hal tersebut dapat diantisipasi dengan cara penambahan kawat kadmium pada kedua sisi tiap-tiap pelat bahan bakar. Untuk teras RSG-GAS berbahan bakar U3Si2-Al kerapatan 4,8 gU/cc maka diperlukan kawat kadmium dengan minimal diameter 0,7 mm. Selain reaktivitas lebih, parameter neutronik lainnya yang perlu diketahui dalam mendesain suatu teras agar tidak terjadi kerusakan bahan bakar adalah nilai faktor puncak daya (power peaking faktor ppf). Untuk itu, dalam penelitian ini dilakukan perhitungan distribusi faktor daya teras RSG-GAS berbahan bakar U3Si2-Al kerapatan 4,8 gU/cc dengan kawat kadmium. Perhitungan tersebut dilakukan dengan paket program SRAC modul CITATION. Hasil perhitungan menunjukkan bahwa teras RSG-GAS berbahan bakar U3Si2-Al kerapatan 4,8 gU/cc dengan kawat kadmium mempunyai ppf sebesar 1,2225 yang sedikit lebih besar dibandingkan dengan ppf teras RSG-GAS berbahan bakar U3Si2-Al kerapatan 2,96 gU/cc (1,1642). Dari analisis hasil perhitungan dapat disimpulkan bahwa nilai ppf untuk teras RSG-GAS berbahan bakar U3Si2-Al kerapatan 4,8 gU/cc dengan kawat kadmium masih dibawah nilai batas dalam LAK RSG-GAS.Kata kunci : faktor puncak daya, kawat kadmium, SRAC To upgrade the ability of RSG-GAS core, research about utilization of U3Si2-Al fuel with 4.8 gU/cc density has been done. The using of U3Si2-Al fuel with 4.8 gU/cc density in the RSG-GAS core could increase the operation cycle length from 20 to 29 days. To the reactor can be operated more efficiently. In another side, the effect of high density fuel is the value of control rod reactivity in the one stuck rod condition to be positive caused by increasing core excess reactivity. Those problem has been solved by added cadmium wire at two each side of all the fuel plate. For the RSG-GAS core U3Si2-Al fueled with 4.8 gU/cc density need cadmium wire with minimum diameter about 0.7 mm. Beside excess reactivity, another neutronic parameter that important to observed in the core design in order the fuel damage cannot happen is value of power peaking factor (ppf). Therefore, in this research, the calculation of power factor distribution for RSG-GAS core U3Si2-Al fuel 4,8 gU/cc density with Cd wire has been done by using CITATION module of SRAC code. Calculation result show that the RSG-GAS core U3Si2-Al fuel 4.8 gU/cc density with added cadmium wire at the each side of fuel plate have ppf about 1.2225 .Those value only a little bigger compared with ppf for current RSG-GAS core fueled U3Si2-Al with 2,96 gU/cc density, that is 1.1642. From the analysis of calculation result can concluded that the value of ppf for the RSG-GAS core U3Si2-Al fuel 4.8 gU/cc density with added by cadmium wire was still lower than maximum margin value at the design data in the SAR of the RSG-GAS. Keywords : power peaking factor, cadmium wire, SRAC
ANALISIS AKTIVITAS SUMBER RADIASI DAN INTENSITAS SINAR GAMMA DI TERAS REAKTOR PWR 1000 MWe Ardani Ardani
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 3 (2010): Oktober 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (390.764 KB)

Abstract

Salah satu PLTN kelas 1000 MWe adalah AP1000, reaktor dengan daya operasi penuh 3400 MWt. Sinar gamma dalam teras reaktor berasal dari tiga jenis sumber: 1) sinar gamma hasil reaksi penangkapan radiatif, 2) sinar gamma hasil reaksi pembelahan spontan dan 3) sinar gamma peluruhan radionuklida hasil pembelahan dan peluruhan radionuklida hasil aktivasi material dalam teras. Komposisi nuklida dalam teras merupakan parameter untuk menentukan laju reaksi penangkapan radiatif. Paket program ORIGEN-2 digunakan untuk menghitung aktivitas radionuklida dalam teras reaktor dan intensitas sinar gamma peluruhannya. Dengan asumsi reaktor dioperasikan pada daya penuh selama 540 hari tanpa gangguan, sebagian besar aktivitas radionuklida hasil pembelahan cenderung stabil, sedangkan aktivitas radionuklida hasil aktivasi material dan aktivitas aktinida cenderung meningkat seiring dengan waktu operasi. Aktivitas terbesar adalah aktivitas radionuklida hasil pembelahan yang totalnya mencapai 6,8×109 curie pada akhir operasi, diikuti aktivitas aktinida 1,06×109 curie, kemudian aktivitas radionuklida hasil aktivasi 5,98×106 curie. Energi sinar gamma terentang antara 0 - 11 MeV, dikelompokkan dalam 7 kelas energi. Sumber sinar gamma penangkapan radiatif memberikan kontribusi intensitas yang paling tinggi diikuti oleh intensitas sinar gamma hasil pembelahan spontan kemudian intensitas sinar gamma hasil peluruhan. Secara umum sinar gamma kelas energi rendah mempunyai intensitas yang lebih besar dibanding intensitas sinar gamma kelas energi tinggi.Kata kunci : PLTN AP1000, aktivitas radionuklida, curie, intensitas sinar gamma, foton One of the 1000 MWe class nuclear power plant is the AP1000, full operating power reactors by 3400 MWt. Gamma rays in the reactor core derived from three types of sources :1) gamma ray results of radiative capture reactions,2) gamma rays result of spontaneous fission reaction and 3) gamma ray decay of radionuclides and the decay of the fission radionuclides results from material activation in the core. Nuclides composition in the core is a parameter to determine the radiative capture reaction rate, calculated using the Origen-2 program package. The code was also used to calculate the activity of radionuclides in the reactor core and gamma ray intensity decay. with the assumption that the reactor operated at full power for 540 days without trouble, most of the activity of radionuclide fission results tend to be stable, whereas the activity of radionuclide activity and the activity of actinide material tends to increase with time of operation. The highest activity is the radionuclide activity of the fission product which totals 6.8×109 curies at the end of reactor operation, followed by the activity of actinide 1.06×109 curis, then the result of activation of radionuclide activity5.98×106 curis. Gamma ray energy ranges between 0-11 MeV, grouped in 7 classes of energy. Radiative capture gamma ray sources contributing the highest intensity followed by the intensity of gamma rays result of spontaneous fission, then the intensity of the decay gamma rays. In general, low-energy gamma rays classes have a greater intensity than the intensity of high energy gamma rays. Keywords : AP1000 nuclear power plant, activity of radionuclides, curie, intensity of gamma rays, photon.
PERHITUNGAN FLUKS KALOR UNTUK KURVA DIDIH SELAMA EKSPERIMEN QUENCHING MENGGUNAKAN SILINDER BERONGGA DIPANASKAN Mulya Juarsa; Raldi Artono Koestor; Nandy Setiadi Djaya Putra; Anhar Riza Antariksawan; Cukup Mulyana; Riska Khalisa
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 3 (2010): Oktober 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (718.372 KB)

Abstract

Salah satu aspek penting manajemen keselamatan dalam pengoperasian reaktor nuklir adalah manajemen termal. Konsep dasar pengelolaan termal adalah untuk mengendalikan kelebihan kalor saat terjadinya kecelakaan. Pemahaman dan investigasi fenomena pendidihan selama kecelakaan yang terjadi secara transien menjadi tahapan penelitian yang penting. Proses quenching adalah proses pendinginan tiba-tiba pada obyek yang panas dengan memasukkan ke dalam suatu fluida. Material SS316 dengan geometri silinder berongga pada posisi vertikal merupakan simulasi dari debris dan digunakan sebagai objek yang dipanaskan. Metode eksperimen dilakukan melalui pendinginan quenching secara alami pada silinder berongga dengan berbagai variasi temperatur awal dari 300 oC sampai 800 oC ke dalam temperatur saturasi air. Selama eksperimen data temperatur direkam dan visualisasi pendidihan dilakukan melalui kamera kecepatan tinggi (HSC). Hasil data transien temperatur digunakan untuk menghitung fluks kalor. Rejim didih film pada TC8 (bagian terluar) dalam kurva didih untuk semua temperatur awal menunjukkan kesesuaian dengan korelasi Bromley. Proses didih film paling singkat terjadi selama 1,11 detik untuk temperatur awal 300 oC. Fluks kalor kritis pada TC8 untuk temperatur awal dari 800 oC, 600 oC, 400 oC dan 300 oC secara berturutturut adalah 700 kW/m2, 500 kW/m2, 450 kW/m2 dan 400 kW/m2.Kata kunci: quenching, silinder, pendidihan, fluks kalor One of the safety management aspects in the operation of nuclear reactors is thermal management. The basic concept of thermal management is to control the excess heat during an accident. The understanding and investigation of boiling phenomenon become important research stage. Quenching process is the process of sudden cooling on a hot object by entering into a fluid. SS316 material with hollow cylinder geometry in a vertical position is the simulation of debris and used as a heated object. Method of quenching experiments carried out through the natural cooling of the hollow cylinder with different variations of initial temperature from 300 oC to 800 oC and submerged into the water with saturation temperature. Temperature data was recorded and boiling was captured using highspeed camera (HSC) during the experiment. The results of transient temperature data was used to calculate the heat flux. The film boiling regime on TC8 (outer portion) in the boiling curves for all initial temperatures have a good agreement with Bromley’s correlation. The shortest process of film boiling was occurred for 1.11 seconds at the initial temperature of 300oC. Critical heat flux at TC8 from initial temperature of 800 oC, 600 oC, 400 oC and 300 oC in respectively is 700 kW/m2, 500 kW/m2, 450 kW/m2 and 400 kW/m2. Keywords: quenching, cylinder, boiling, heat flux
ANALISIS PARAMETER KINETIK DAN TRANSIEN TERAS KOMPAK REAKTOR RSG-GAS Iman Kuntoro; Surian Pinem; Tagor Malem Sembiring
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 3 (2010): Oktober 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (236.894 KB)

Abstract

Dalam rangka meningkatkan efisiensi penggunaan bahan bakar reaktor RSG-GAS telah dilakukan studi penentuan teras kompak. Hasil perhitungan parameter neutronik menunjukkan bahwa teras kompak dengan menutup empat fasilitas iradiasi (IP) dengan elemen bakar dapat meningkatkan siklus operasi 23,6 %. Selanjutnya perlu dilakukan penentuan parameter kinetik dan analisis transien teras kompak untuk mengetahui keselamatan operasi reaktor. Perhitungan dilakukan dengan menggunakan program WIMS/D4 untuk generasi konstanta difusi sel elemen bakar dan MTRDYN untuk menentukan parameter kinetik dan analisis transien. Hasil perhitungan menunjukkan bahwa harga fraksi neutron kasip total teras kompak naik 2 % dan umur neutron serempak turun 8,3 % dibandingkan dengan teras setimbang. Temperatur maksimum bahan bakar saat transien pada daya awal 1 W adalah 71,64 0C dan pada daya 1 MW adalah 129,60 0C. Hasil ini menunjukkan bahwa teras kompak RSG-GAS aman digunakan sebagai teras alternatif.Kata kunci: parameter kinetik, transien, reaktor For increasing the efficiency of fuel element of the RSG-GAS reactor, some alternative configuration has been searched to obtain a compact core configuration. Calculation result of the neutronics parameters that the compact core with insertion fuel element to all irradiation facility (IP) can increase operation cycle length to about 23.6 %. Then, it is necessary to calculate the kinetic parameters and transient analysis of the compact core to verify the reactor operation safety. Calculations were performed by means of WIMS/D4 and MTRDYN code for generation of cell diffusion constants and for kinetic parameters and transient analysis respectively. The result showed that the total delayed neutron fraction of compact core increases by 2 % and the prompt neutron lifetime decreases 8.3 % compared to the equilibrium core. Maximum temperature of the fuel element at transient at initial power of 1 W is 71.64 0C and at the power 1 MW is 126.60 0C. The result showed that the compact core of RSG-GAS reactor can be used as alternative core safely. Keywords: kinetic parameter, transient, reactor.
PEMODELAN DAN ANALISIS SEBARAN RADIONUKLIDA DARI PWR PADA KONDISI ABNORMAL DI TAPAK BOJANEGARA-SERANG Sri Kuntjoro
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 3 (2010): Oktober 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.838 KB)

Abstract

Penambahan pembangkit listrik yang baru khususnya pembangkit listrik tenaga nuklir (PLTN) berpotensi memberikan konsekuensi radiologis pada masyarakat dan lingkungan, karena adanya lepasan radioaktif dalam kondisi operasi normal maupun abnormal. Oleh karena itu maka pengelola reaktor nuklir harus bisa menyediakan data dan argumentasi yang kuat untuk menjelaskan tentang keselamatan PLTN terhadap lingkungan. Untuk itu perlu dilakukan analisis kondisi abnormal yang terjadi pada PLTN yang akan memberikan konsekuensi radiologis pada lingkungan. Analisis dilakukan dengan membuat pemodelan simulasi kondisi abnormal yang dipostulasikan pada PLTN tipe PWR 1000 MWe serta simulasi dan pemodelan pola potensi lingkungan sebagai daya dukung tapak terhadap penerimaan konsekuensi radiologis tersebut. Pemodelan fenomena transport radionuklida dari teras reaktor sampai ke luar dari sungkup reaktor dilakukan menggunakan perangkat lunak EMERALD dan pemodelan pola dispersi radioaktivitas ke lingkungan dari reaktor meliputi simulasi kondisi meteorologi, distribusi penduduk, produksi dan konsumsi masyarakat pada kondisi ekstrim di daerah studi, menggunakan perangkat lunak GIS, Arcview, Windrose, dan PC COSYMA. Pemodelan konsekuensi radiologis menggunakan tapak contoh daerah Bojanegara-Kramatwatu Pantai Serang-Banten. Dengan menggunakan data sourceterm, data meteorologi dan data dispersi (sebaran penduduk, produksi pertanian dan ternak) dan modeling alur paparan (pathway), dihasilkan model sebaran radionuklida dan penerimaan paparan radiasi di lingkungan tapak Bojanegara-Serang, dengan penerimaan dosis radiasi di bawah batas yang diijinkan badan regulator BAPETEN.Kata kunci : PLTN, radioaktivitas, pola dispersi, keselamatan Additional of electrical power especially Nuclear Power Plant will give radiological consequences to population and environment due to radioactive release in normal and abnormal condition. In consequence the management of nuclear power plant must supply data and strong argumentation to clarify the safety of nuclear power plant to environment. For that purpose it needs to be carried out an analysis of abnormal condition in nuclear power plant and its radiological consequences to the environment. That analysis is done using abnormal condition simulation model postulated on 1000 MWe nuclear power plant. That simulation model is used also to evaluate environmental potential as site capability in supporting the radiological consequences. Radionuclide transport modeling from reactor core to containment uses EMERALD computer code. Other computer codes are Windrose, PC-COSYMA and ArcView are used to simulate meteorology condition, radionuclide release to population distribution of food production and consumption and distribution of radiation dose received to population around nuclear power plant. Application of that simulation is carried out to NPP candidate site in Bojanegara-Kramatwatu, Serang Banten peninsula. Using source term data, meteorology data, dispersion data and pathways modeling are resulting radionuclide dispersion model and radiation pathway acceptance at the surrounding nuclear power plant site (Bojanegara-Serang peninsula). The result shows that maximum radiation dose received is lower than dose permitted in accordance with regulatory body (BAPETEN). Keywords : Nulear power plant, radioactivity, dispersion model, safety

Page 1 of 1 | Total Record : 5


Filter by Year

2010 2010


Filter By Issues
All Issue Vol 26, No 2 (2024): June 2024 Vol 26, No 1 (2024): February 2024 Vol 25, No 3 (2023): October 2023 Vol 25, No 2 (2023): June 2023 Vol 25, No 1 (2023): February 2023 Vol 24, No 3 (2022): October 2022 Vol 24, No 2 (2022): June 2022 Vol 24, No 1 (2022): February (2022) Vol 23, No 3 (2021): October (2021) Vol 23, No 2 (2021): June 2021 Vol 23, No 1 (2021): FEBRUARY 2021 Vol 22, No 3 (2020): OCTOBER 2020 Vol 22, No 2 (2020): June 2020 Vol 22, No 1 (2020): February 2020 Vol 21, No 3 (2019): October 2019 Vol 21, No 2 (2019): JUNI 2019 Vol 21, No 1 (2019): February 2019 Vol 20, No 3 (2018): Oktober 2018 Vol 20, No 2 (2018): JUNI 2018 Vol 20, No 1 (2018): Februari 2018 Vol 19, No 3 (2017): Oktober 2017 Vol 19, No 2 (2017): Juni 2017 Vol 19, No 1 (2017): Februari 2017 Vol 18, No 3 (2016): Oktober 2016 Vol 18, No 2 (2016): Juni 2016 Vol 18, No 1 (2016): Februari 2016 Vol 17, No 3 (2015): Oktober 2015 Vol 17, No 2 (2015): Juni 2015 Vol 17, No 1 (2015): Pebruari 2015 Vol 16, No 3 (2014): Oktober 2014 Vol 16, No 2 (2014): Juni 2014 Vol 16, No 1 (2014): Pebruari 2014 Vol 15, No 3 (2013): Oktober 2013 Vol 15, No 2 (2013): Juni 2013 Vol 15, No 1 (2013): Pebruari 2013 Vol 14, No 3 (2012): Oktober 2012 Vol 14, No 2 (2012): Juni 2012 Vol 14, No 1 (2012): Pebruari 2012 Vol 13, No 3 (2011): Oktober 2011 Vol 13, No 2 (2011): Juni 2011 Vol 13, No 1 (2011): Pebruari 2011 Vol 12, No 3 (2010): Oktober 2010 Vol 12, No 2 (2010): Juni 2010 Vol 12, No 1 (2010): Pebruari 2010 More Issue