Articles
8 Documents
Search results for
, issue
"JURNAL MATEMATIKA NO 2 2016"
:
8 Documents
clear
ECONOMIC PRODUCTION QUANTITY DALAM KASUS PRODUKSI BARANG YANG TIDAK SEMPURNA DAN PENGERJAAN KEMBALI SERTA PENGEMBALIAN BARANG TANPA STOCKOUT
Adhie Wijaya Litianko
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
,Abstrak. Model EPQ biasa digunakan dalam masalah pengendalian persediaan untuk menentukan kebijakan dan mengawasi tingkat persediaan. Permasalahan persediaan adalah bagaimana cara menentukan jumlah produksi optimal dengan biaya total persediaan yang minimum. Asumsi umum yang digunakan adalah semua barang yang dihasilkan sempurna. Pada Tugas Akhir ini dibahas mengenai Model Economic Production Quantity dalam kasus produksi barang yang tidak sempurna dan pengerjaan kembali serta pengembalian barang tanpa Stockout, dimana barang yang diproduksi tidak semua sempurna dan kemungkinan adanya barang gagal. Barang yang belum sempurna akan dikerjakan kembali sebelum dapat dijual. Pada model ini juga dipertimbangkan tentang barang yang belum sempurna yang lolos dari pengawasan dan berakhir di tangan konsumen dan mengakibatkan pengembalian barang.
SUBGRUP -NORMAL DAN SUBRING -MAX
Kristi Utomo Kristi Utomo
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (156.444 KB)
ABSTRACT. For any group , subgroup of is called -normal subgroup if there exist a normal subgroup of such that and where is maximal normal subgroup of which is contained in . On the other side, for each ring , subring of is called -max subring if there exist an ideal of such that and where is maximal ideal of which is contained in . Subgroup normal of is -normal subgroup if and only if is maximal normal subgroup and ideal of is -max subring if and only if is maximal ideal. Every group and ring is -normal subgroup and -max subring of itself.
URUTAN PARSIAL PADA SEMIGRUP DAN PADA KELAS-KELAS DARI SUATU SEMIGRUP
Irtrianta Pasangka Irtrianta Pasangka
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (271.378 KB)
ABSTRACK. Non empty set with binary operation is called semigroup if the binary operation on is associative. An element a of semigroup is called regular if there exist such that and semigroup is called invers if there exist such that dan . Partial order is relation which is satisfy reflexive, antysymetric and transitive. Relation dan is equivalent relation. Let be semigroup and relation for every , is class that contain . Thus obtain on relations dan . Relation is called partially order relation of regular semigroup if for any , if and only if and for some . Relation is called partially order relation of regular semigroup if for any , if and only if for some .
BERBAGAI JENIS NEAR-RING DAN KETERKAITANNYA
Pranadita Sitaresmi
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (363.903 KB)
Let be a non empty set with two binary operations, those are additive and multiplicative. Triple is near-ring if is a group structure toward additive operation, semigroup structure toward multiplicative operation and statisfied right distributive law toward that both binary operation. is said to be regular if for every there exists such that . If is a group is called a near field. Near ring is said to be near ring if for every there exists such that and said to be near ring if for every there exists such that . Futhermore, disscussed the relation between near ring and near ring with regular near ring and near field. Every near field are , near ring. Every regular near ring is an near ring and if is weak commutative then is an near ring.
HIMPUNAN DOMINASI SISI-SISI KUAT DAN SISI-SISI LEMAH DARI SUATU GRAF
Mutmainnah Mutmainnah
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
ABSTRACT. Edge e-dominates an edge if with is the subgraph induced . A set is an edge-edge domination set notated by EED-set if every edge in is e-dominated by an edge in . The edge-edge domination number notated by is the cardinality of a minimum EED-set. A set is a strong edge-edge domination set notated by SEED-set if every edge in is e-dominated strongly by an edge in with the condition and . Strong edge-edge domination number notated by . A set is a weak edge-edge domination set notated by WEED-set if every edge in is e-dominated weakly by an edge in with the condition and . Weak edge-edge domination number notated by . This final project we study about strong edge-edge domination set, weak edge-edge domination set and application edge-edge domination set namely determining the optimal number of security personnel that will be used to secure an area.
METODE MEHAR UNTUK SOLUSI OPTIMAL FUZZY DAN ANALISA SENSITIVITAS PROGRAM LINIER DENGAN VARIABEL FUZZY BILANGAN TRIANGULAR
Marlia Ulfa Marlia Ulfa
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (265.218 KB)
ABSTRACT. Fuzzy linear programming problems containing closely with uncertainty about the parameters. Changes in the value of the parameters without changing the optimal solution or change the optimal solution is called sensitivity analysis. Sensitivity analysis is a basic for studying the effect of the changes that occur to the optimal solution. Linear programming with fuzzy variable is a form of fuzzy linear program is not fully because there are objective function coefficients and coefficients of constraints that are crisp numbers. Resolving the problem of linear programming with fuzzy variables by using mehar method will get solutions and optimal fuzzy value and solutions and optimal crisp value. To solve the problem of linear program with fuzzy variable is using mehar, must be converted beforehand in the form of crisp linear programming. This thesis explores mehar method to solve linear programming problems with fuzzy variables with triangular number and a sensitivity analysis on the optimum solution FVLP so that when there is a change of data of the problem, new solution will remain optimal.
PENYELESAIAN PROGRAM LINIER VARIABEL FUZZY TRIANGULAR MENGGUNAKAN METODE DEKOMPOSISI DAN METODE SIMPLEKS
Nanda Puspitasari
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (422.453 KB)
ABSTRACT. Fuzzy Variable Linear Programming (FVLP) with triangular fuzzy variable is part of not fully fuzzy linear programming with decision variables and the right side is a fuzzy number. Solving FVLP with triangular fuzzy variables used Decomposition Methods and Simplex Methods or Big-M Methods by using Robust Ranking to obtain crisp values. Decomposition Methods of resolving cases maximization and minimization FVLP by dividing the problems into three parts CLP. Solving FVLP with Simplex method for maximizing case and Big-M Methods to directly solve the minimization case FVLP do without confirmation first. The optimal solution fuzzy, crisp optimal solution, optimal objective function fuzzy and crisp optimal objective function generated from Decomposition Methods and Simplex Methods for maximizing case has same solution. So as Decomposition Methods and Big-M Methods for minimizing case has same solution. Decomposition Methods has a longer process because it divides the problem into three parts CLP and Simplex Methods or Big-M Methods has a fewer processes but more complicated because the process without divide the problems into three parts.Keywords :
FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN
Agus Suryanto Agus Suryanto
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (429.219 KB)
ABSTRAK. Suatu kategori terdiri dari suatu kelas yang berisi obyek-obyek, himpunan morfisma dan memenuhi aksioma tertentu. Fungtor kontravarian merupakan pemetaan yang memetakan setiap obyek ke obyek dan memetakan setiap morfisma ke morfisma serta memenuhi aksioma-aksioma tertentu. Obyek nol, kernel dan kokernel serta produk dan koproduk mempunyai peranan penting dalam kategori abelian. Kategori dikatakan kategori abelian jika pada kategori tersebut terdapat obyek nol, produk dan koproduk berhingga, setiap morfisma mempunyai kernel dan kokernel, setiap monomorfisma merupakan kernel serta setiap epimorfisma merupakan kokernel.