cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Matematika
Published by Universitas Diponegoro
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 8 Documents
Search results for , issue "JURNAL MATEMATIKA NO 2 2016" : 8 Documents clear
ECONOMIC PRODUCTION QUANTITY DALAM KASUS PRODUKSI BARANG YANG TIDAK SEMPURNA DAN PENGERJAAN KEMBALI SERTA PENGEMBALIAN BARANG TANPA STOCKOUT Adhie Wijaya Litianko
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

,Abstrak. Model EPQ biasa digunakan dalam masalah pengendalian persediaan untuk menentukan kebijakan dan mengawasi tingkat persediaan. Permasalahan persediaan adalah bagaimana cara menentukan jumlah produksi optimal dengan biaya total persediaan yang minimum. Asumsi umum yang digunakan adalah semua barang yang dihasilkan sempurna. Pada Tugas Akhir ini dibahas mengenai Model Economic Production Quantity dalam kasus produksi barang yang tidak sempurna dan pengerjaan kembali serta pengembalian barang tanpa Stockout, dimana barang yang diproduksi tidak semua sempurna dan kemungkinan adanya barang gagal. Barang yang belum sempurna akan dikerjakan kembali sebelum dapat dijual. Pada model ini juga dipertimbangkan tentang barang yang belum sempurna yang lolos dari pengawasan dan berakhir di tangan konsumen dan mengakibatkan pengembalian barang.  
SUBGRUP -NORMAL DAN SUBRING -MAX Kristi Utomo Kristi Utomo
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (156.444 KB)

Abstract

  ABSTRACT. For any group , subgroup  of  is called -normal subgroup if there exist a normal subgroup  of  such that  and  where  is maximal normal subgroup of  which is contained in . On the other side, for each ring , subring  of  is called -max subring if there exist an ideal  of  such that  and  where  is maximal ideal of  which is contained in . Subgroup normal  of  is -normal subgroup if and only if  is maximal normal subgroup and ideal  of  is -max subring if and only if  is maximal ideal. Every group and ring is -normal subgroup and -max subring of itself.  
URUTAN PARSIAL PADA SEMIGRUP DAN PADA KELAS-KELAS DARI SUATU SEMIGRUP Irtrianta Pasangka Irtrianta Pasangka
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (271.378 KB)

Abstract

  ABSTRACK. Non empty set  with binary operation  is called semigroup if the binary operation on  is associative. An element a of semigroup  is called regular if there exist  such that  and semigroup  is called invers if there exist  such that  dan . Partial order is relation which is satisfy reflexive, antysymetric and transitive. Relation  dan  is equivalent relation. Let  be semigroup and  relation for every ,  is  class that contain . Thus obtain on relations  dan . Relation  is called partially order relation of regular semigroup  if for any ,  if and only if  and  for some . Relation  is called partially order relation of regular semigroup  if for any ,  if and only if  for some . 
BERBAGAI JENIS NEAR-RING DAN KETERKAITANNYA Pranadita Sitaresmi
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (363.903 KB)

Abstract

 Let be a non empty set with two binary operations, those are additive and multiplicative. Triple  is near-ring if is a group structure toward additive operation, semigroup structure toward multiplicative operation and statisfied right distributive law toward that both binary operation.  is said to be regular if for every  there exists  such that . If  is a group  is called a near field. Near ring  is said to be  near ring if for every  there exists  such that  and said to be  near ring if for every  there exists  such that . Futhermore, disscussed the relation between  near ring and  near ring with regular near ring and near field. Every near field are ,  near ring. Every regular near ring  is an  near ring and if  is weak commutative then  is an  near ring. 
HIMPUNAN DOMINASI SISI-SISI KUAT DAN SISI-SISI LEMAH DARI SUATU GRAF Mutmainnah Mutmainnah
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

 ABSTRACT. Edge  e-dominates an edge  if  with  is the subgraph induced . A set  is an edge-edge domination set notated by EED-set if every edge in   is e-dominated by an edge in . The edge-edge domination number notated by  is the cardinality of a minimum EED-set. A set  is a strong edge-edge domination set notated by SEED-set if every edge in  is e-dominated strongly by an edge in  with the condition  and . Strong edge-edge domination number notated by . A set  is a weak edge-edge domination set notated by WEED-set if every edge in  is e-dominated weakly by an edge in  with the condition  and . Weak edge-edge domination number notated by . This final project we study about strong edge-edge domination set, weak edge-edge domination set and application edge-edge domination set namely determining the optimal number of security personnel that will be used to secure an area. 
METODE MEHAR UNTUK SOLUSI OPTIMAL FUZZY DAN ANALISA SENSITIVITAS PROGRAM LINIER DENGAN VARIABEL FUZZY BILANGAN TRIANGULAR Marlia Ulfa Marlia Ulfa
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (265.218 KB)

Abstract

 ABSTRACT. Fuzzy linear programming problems containing closely with uncertainty about the parameters. Changes in the value of the parameters without changing the optimal solution or change the optimal solution is called sensitivity analysis. Sensitivity analysis is a basic for studying the effect of the changes that occur to the optimal solution. Linear programming with fuzzy variable is a form of fuzzy linear program is not fully because there are objective function coefficients and coefficients of constraints that are crisp numbers. Resolving the problem of linear programming with fuzzy variables by using mehar method will get solutions and optimal fuzzy value and solutions and optimal crisp value. To solve the problem of linear program with fuzzy variable is using mehar, must be converted beforehand in the form of crisp linear programming. This thesis explores mehar method to solve linear programming problems with fuzzy variables with triangular number and a sensitivity analysis on the optimum solution FVLP so that when there is a change of data of the problem, new solution will remain optimal.  
PENYELESAIAN PROGRAM LINIER VARIABEL FUZZY TRIANGULAR MENGGUNAKAN METODE DEKOMPOSISI DAN METODE SIMPLEKS Nanda Puspitasari
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (422.453 KB)

Abstract

 ABSTRACT. Fuzzy Variable Linear Programming (FVLP) with triangular fuzzy variable is part of not fully fuzzy linear programming with decision variables and the right side is a fuzzy number. Solving  FVLP with triangular fuzzy variables used Decomposition Methods and Simplex Methods or Big-M Methods by using Robust Ranking to obtain crisp values. Decomposition  Methods of resolving cases maximization and minimization FVLP by dividing the problems into three parts CLP. Solving FVLP with Simplex method for maximizing case and Big-M Methods to directly solve the minimization case FVLP do without confirmation first. The optimal solution fuzzy, crisp optimal solution, optimal objective function fuzzy and crisp optimal objective function  generated from Decomposition Methods and Simplex Methods for maximizing case has same solution. So as Decomposition Methods and Big-M Methods for minimizing case has same solution. Decomposition Methods has a longer process because it divides the problem into three parts CLP and Simplex Methods or Big-M Methods has a fewer processes but more complicated because the process without divide the problems into three parts.Keywords : 
FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN Agus Suryanto Agus Suryanto
Jurnal Matematika JURNAL MATEMATIKA NO 2 2016
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (429.219 KB)

Abstract

 ABSTRAK. Suatu kategori terdiri dari suatu kelas yang berisi obyek-obyek, himpunan morfisma dan memenuhi aksioma tertentu. Fungtor kontravarian  merupakan pemetaan yang memetakan setiap obyek  ke obyek  dan memetakan setiap morfisma  ke morfisma  serta memenuhi aksioma-aksioma tertentu. Obyek nol, kernel dan kokernel serta produk dan koproduk mempunyai peranan penting dalam kategori abelian. Kategori dikatakan kategori abelian jika pada kategori tersebut terdapat obyek nol, produk dan koproduk berhingga, setiap morfisma mempunyai kernel dan kokernel, setiap monomorfisma merupakan kernel serta setiap epimorfisma merupakan kokernel. 

Page 1 of 1 | Total Record : 8