cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
Department of Statistic, Faculty of Science and Mathematics , Universitas Diponegoro Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro Gedung F lt.3 Tembalang Semarang 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Gaussian
Published by Universitas Diponegoro
ISSN : -     EISSN : 23392541     DOI : -
Core Subject : Education,
Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM UNDIP.
Arjuna Subject : -
Articles 9 Documents
Search results for , issue "Vol 7, No 4 (2018): Jurnal Gaussian" : 9 Documents clear
ANALISIS KEPUASAN DAN LOYALITAS PELANGGAN DALAM PEMESANAN TIKET PESAWAT SECARA ONLINE MENGGUNAKAN PENDEKATAN PARTIAL LEAST SQUARE (PLS) Trisnawati Gusnawita Berutu; Abdul Hoyyi; Sugito Sugito
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28863

Abstract

Technology advances are bring rapid changes, thus bringing the world to the information society. From this technological progress thus e-commerce emerged, as a means to meet the needs of goods and services through internet access (online). This is what the airlines utilized by cooperating with various internet service providers (online), to provide convenience and comfort of airplane passengers in buying tickets without having to come directly to the place and through intermediaries. To provide the best service, need to know what factors that influence customer satisfaction in ordering airline tickets online. Appropriate modeling for this problem using structural equation modeling, with Partial Least Square (PLS) approach. The PLS approach is chosen because it is not based on several assumptions, one of these is the normal multivariate assumption. In this research, the exogenous latent variables used are performance, access, security, sensation, information, and web design, while the endogenous latent variables are satisfaction and loyalty. Based on the results of the analysis it can be concluded that the latent variables of access, security, sensation, information, and web design are able to explain the latent satisfaction variable of 70.32% while the satisfaction latent variable is able to explain the latent variable of loyalty by 36.02%. 
PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN METODE RADIAL BASIS FUNCTION NEURAL NETWORK MENGGUNAKAN GUI MATLAB Rizki Brendita Br Tarigan; Hasbi Yasin; Alan Prahutama
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28872

Abstract

Capital market Indonesia is one of the important factors in the development of the national economy, proved to have many industries and companies that use these institutions as a medium to absorb investment to strengthen its financial position. The recent years, Jakarta Composite Index (JCI) in Capital Market tend to strengthen. JCI data are the time series data obtained from the past to predict the future with caracteristics of JCI data are non stationary and non linier. Neural network is a computational method that imitate the biological neural network. There are several types of methods that can be used in neural network that is: Radial Basis Function Neural Network (RBFNN) Generalized Regression Neural Network (GRNN), dan Probabilistic Neural Network (PNN). Model of Radial Basis Function Neural Network is suitable for time series data. This model has a network architecture in the form of input layer, hidden layer and output layer. This research is done with the help of GUI as a computation tool. The results of analysis by using GUI conducted on the size sample of data as much as 1211 taken as 100 the data thus obtained value of 2315,6 MSE training and training MAPE value of 0,72%, while for the testing of 28886,7 MSE and MAPE testing value is 0,70%. Based on the results of forecasting, JCI values on January 02, 2018 until January 08, 2018 at 6499,922 every day. Keywords: Radial Basis Function Neural Network (RBFNN), Jakarta Composite Index (JCI), MSE, MAPE, Time Series, GUI.
PERAMALAN MENGGUNAKAN MODEL FEED FORWARD NEURAL NETWORK DENGAN ALGORITMA ADAPTIVE SIMULATED ANNEALING (Studi kasus: Harga minyak mentah dunia yang dipublikasikan oleh OPEC) Affan Hanafaie; Sugito Sugito; Sudarno Sudarno
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28865

Abstract

Today, crude oil trading industry is still an important industry in the world because it still has high fuel oil consumption. The crude oil prices tend to fluctuate causing the prediction of crude oil in the coming periods to be a challenge. Forecasting the price of crude oil can be done by various methods, one of them is ARIMA Box-Jenkins model with OLS method to estimate the parameter, but this method has several assumptions that must be met. As time goes by, many methods that discovered, one of them is artificial neural network which can combined with various parameter optimization methods such as Adaptive Simulated Annealing algorithm. Adaptive Simulated Annealing algorithm is an optimization method that inspired by the process of crystallization, the advantages of this algorithm has a running time faster than similar algorithms. The combination of artificial neural networks and Adaptive Simulated Annealing algorithms can be used to model the historical data without requiring assumptions in the analysis. Based on the analysis on this research, the best model is obtained FFNN 2-5-1 with MAPE value of 1.0042%. Keywords: neural network, Adaptive Simulated Annealing, crude oil.
DIAGRAM KONTROL MULTIVARIAT np DAN DIAGRAM KONTROL JARAK CHI-SQUARE DALAM PENGENDALIAN KUALITAS PRODUK KAIN DENIM (Studi Kasus di PT Apac Inti Corpora) Dwi Harti Pujiana; Mustafid Mustafid; Di Asih I Maruddani
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28866

Abstract

Denim fabric sort number 78032 is one type of fabric in the last 4 years almost every month produced by PT Apac Inti Corpora. In the continuity of denim fabric production process, there are data defects (non-conformity) that causes the quality of denim fabric decreases. To maintain the consistency of the quality of products produced in accordance with the specified specifications, it is necessary to control the quality of the production process that has been running for this. Multivariate control charts attributes used are multivariate control charts np using the number of samples and the proportion of disability data with correlation between variables while the chi-square distance control charts use squared distances with uncorrelated data between variables. The results showed that in the multivariate control chart np there were 2 out-of-control observations in the phase II data using control limits from phase I data already controlled by the value of BKA of 636321.4. While in the chi-square distance control chart showed all observations are in in-control condition with BKA value of 0.06536. Controlled production process obtained multivariate process capability value  for multivariate control np diagram of 0.625142 <1 which means the process is not capable, while the value of process capability in the chi-square distance control chart is 1.1329> 1 which means the process is capable. Keywords: denim fabric, multivariate np control chart, chi-square distance control chart, multivariate process capability
ESTIMASI VALUE AT RISK PORTOFOLIO SAHAM MENGGUNAKAN METODE GARCH-COPULA (Studi Kasus : Harga Penutupan Saham Harian Unilever Indonesia dan Kimia Farma Periode 1 Januari 2013- 31 Desember 2016) Lingga Bayu Prasetya; Dwi Ispriyanti; Alan Prahutama
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28867

Abstract

Any investment in the stock market will earn returns accompanied by risks. Return and risk has a mutual correlation that equilibrium. The formation of a portfolio is intended to provide a lower risk or with the same risk but provide a higher return. Value at Risk (VaR) is a instrument to analyze risk management. Time series model used in stock return data that it has not normal distribution and heteroscedastisicity is Generalized Autoregressive Conditional Heteroscedasticity (GARCH). GARCH-Copula is a combined method of GARCH and Copula. The Copula method is used in joint distribution modeling because it does not require the assumption of normality of the data and can capture tail dependence between each variable. This research uses return data from stock closing prices of Unilever Indonesia and Kimia Farma period January 1, 2013 until December 31, 2016. Copula model is selected based on the highest likelihood log value is Copula Clayton. Value at Risk estimates of Unilever Indonesia and Kimia Farma's stock portfolio on the same weight were performed using Monte Carlo simulation with backtesting of 30 days period data at 95% confidence level. Keywords : Stock, Risk, Generalized Autoregressive Conditional Heteroscedasticity (GARCH), Copula, Value at Risk
PEMODELAN INDEKS HARGA KONSUMEN DI JAWA TENGAH DENGAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE SEEMINGLY UNRELATED REGRESSION (GSTAR-SUR) Mega Fitria Andriyani; Abdul Hoyyi; Hasbi Yasin
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28859

Abstract

The Generalized Space Time Autoregressive (GSTAR) model with Seemingly Unrelated Regression (SUR) estimation method or often called GSTAR-SUR is more efficient to be used for residual correlation than Ordinary Least Square (OLS) estimation method. The SUR estimation method utilizes residual correlation information to improve the estimated efficiency resulting in a smaller standard error. The purpose of this research is to get the GSTAR-SUR model according to Consumer Price Index (CPI) data in four regencies or cities in Central Java namely Purwokerto, Surakarta, Semarang, and Tegal. Based on the assumed white noise assumption, the smallest MAPE and RMSE averages, the best model chosen in this research is the GSTAR-SUR(11)I(1) model with the heavy of normalized cross-correlation with the average MAPE value of 0.4455% and RMSE value of 0.80582. The best model obtained explains that the CPI data in Purwokerto, Semarang, and Tegal not only influenced by the previous time but also influenced by the locations. Meanwhile, the CPI data in Surakarta is only influenced by the previous time, but it is not affected by other locations. Keywords: SUR, OLS, Consumer Price Index
HISTORICAL SIMULATION UNTUK MENGHITUNG VALUE AT RISK PADA PORTOFOLIO OPTIMAL BERDASARKAN SINGLE INDEX MODEL MENGGUNAKAN GUI MATLAB (Studi Kasus: Kelompok Saham JII Periode Juni - November 2017) Tresno Sayekti Nuryanto; Alan Prahutama; Abdul Hoyyi
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28869

Abstract

The essence of investment is a placement of a number of funds at one time in hope of gaining profits in the future. One of the most traded forms of investment is stocks. When investing in stocks, investors often run the risk of loss. This loss risk can be overcome by forming a portfolio consisting of several shares. To form an optimal portfolio, investors must first determine an efficient portfolio that produces a certain level of profit with the lowest risk, or a certain level of risk with the highest level of profit. One method for determining the optimal portfolio is to use the Single Index Model method. Whereas to calculate Value at Risk (VaR) using the Historical Simulation method. In this study, researcher used data from the daily closing price of shares incorporated in the Jakarta Islamic Index (JII) stock group in the period of June - November 2017. The shares which will be used were 9 shares in the JII stock group. According to the research result, there are three stocks that go into an optimal portfolio that is SMGR, UNTR, and KLBF with the value of each of its shares respectively by 48,54%, 46,18%, and 5,28%. While the value of the Value at Risk with initial capital of Rp100.000.000, 1 day holding period and a trust level of 95% for optimal portfolio and each stock that goes into optimal portfolio amounted Rp2.090.283, Rp2.258.600, Rp3.403.000, and Rp2.564.200. Keywords: Share, Portofolio, Single Index Model, Value at Risk, Historical Simulation, JII.
PENGEMBANGAN ESTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING HOLT-WINTERS ADDITIVE MENGGUNAKAN METODE OPTIMASI GOLDEN SECTION Al Qarani, Muhammad Aqajahs; Santoso, Rukun; Safitri, Diah
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28861

Abstract

Forecasting is an activity to estimate what will happen in the future, one method that can be used is Exponential Smoothing. In this study used the smoothing method of Exponential Smoothing Holt-Winters Additive with three parameters that can be used for prediction of time series data that has trend patterns and seasonal patterns. The problem that arises in this method is to determine the optimum parameter to minimize the forecast error value. This study uses the Golden Section optimization method to estimate the optimum parameters that minimize the MAPE value. The data used is data on foreign tourists who use accommodation services in Yogyakarta from the period January 2009 to December 2016 that have trend patterns and additive seasonal patterns. In simplifying the optimization calculation process, a syntax using RStudio is arranged which contains the Golden Section algorithm to determine the combination that has the optimum parameters. In this optimization there are two treshold error, namely 0.001 and 0.00001. The results showed that the parameter estimator with the Golden Section method for the treshold error of 0.001 obtained MAPE of 18,96732% and for treshold error of 0.00001 MAPE was 18,96536%. This value is in the same MAPE criteria which is 10% ─ 20% (good) so that the selection of the best model is determined based on minimal iteration. Therefore the weighting parameter value used is the result of optimization with ε ≤ 0.001, then from the selected model it is used to predict the number of foreign tourists using accommodation services in Yogyakarta in the next 12 months.
PENGUKURAN KINERJA PORTOFOLIO OPTIMAL CAPITAL ASSET PRICING MODEL (CAPM) DAN ARBITRAGE PRICING THEORY (APT) (Studi Kasus : Saham-saham LQ45) Dedi Baleo Pasaribu; Di Asih I Maruddani; Sugito Sugito
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28870

Abstract

Investing is placing money or funds in the hope of obtaining additional or specific gains on the money or funds. The capital market is one place to invest in the financial field of interest to investor. This is because the capital market gives investor the freedom to choose securities traded in the capital market in accordance with the wishes of investor. Investor are included in risk averter, that means investor will always try to avoid risk. To avoid risk, investor try to diversify their investment. Diversification concept commonly used is portfolio. To maximize the return to be earned, the investor will invest his funds into several stocks in order to earn a greater profit. Capital Asset Pricing Model (CAPM) is a balance model that describes the relation of a risk with return more simply because it uses only one variable to describe the risk. Arbitrage Pricing Theory (APT) is a balance model that used many risk variables to see the relation of risk and return. With both models will be obtained a portfolio with each constituent stock is four stocks selected from 45 stocks in the LQ45 index. To find out which portfolio is the best performed a performance analysis using the Sharpe index. From the measurement result, it is found that the best portfolio is the CAPM portfolio with composite stock is PTBA with investment weight of 0.467%, BUMI with investment weight of 12.855%, ANTM with investment weight of 53.077% and PPRO with investment weight of 33.601%. Keywords: LQ45, portfolio, Capital Asset Pricing Model (CAPM), Arbitrage Pricing Theory                       (APT), Sharpe Index 

Page 1 of 1 | Total Record : 9


Filter by Year

2018 2018


Filter By Issues
All Issue Vol 13, No 1 (2024): Jurnal Gaussian Vol 12, No 4 (2023): Jurnal Gaussian Vol 12, No 3 (2023): Jurnal Gaussian Vol 12, No 2 (2023): Jurnal Gaussian Vol 12, No 1 (2023): Jurnal Gaussian Vol 11, No 4 (2022): Jurnal Gaussian Vol 11, No 3 (2022): Jurnal Gaussian Vol 11, No 2 (2022): Jurnal Gaussian Vol 11, No 1 (2022): Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian Vol 10, No 3 (2021): Jurnal Gaussian Vol 10, No 2 (2021): Jurnal Gaussian Vol 10, No 1 (2021): Jurnal Gaussian Vol 9, No 4 (2020): Jurnal Gaussian Vol 9, No 3 (2020): Jurnal Gaussian Vol 9, No 2 (2020): Jurnal Gaussian Vol 9, No 1 (2020): Jurnal Gaussian Vol 8, No 4 (2019): Jurnal Gaussian Vol 8, No 3 (2019): Jurnal Gaussian Vol 8, No 2 (2019): Jurnal Gaussian Vol 8, No 1 (2019): Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian Vol 7, No 3 (2018): Jurnal Gaussian Vol 7, No 2 (2018): Jurnal Gaussian Vol 7, No 1 (2018): Jurnal Gaussian Vol 6, No 4 (2017): Jurnal Gaussian Vol 6, No 3 (2017): Jurnal Gaussian Vol 6, No 2 (2017): Jurnal Gaussian Vol 6, No 1 (2017): Jurnal Gaussian Vol 5, No 4 (2016): Jurnal Gaussian Vol 5, No 3 (2016): Jurnal Gaussian Vol 5, No 2 (2016): Jurnal Gaussian Vol 5, No 1 (2016): Jurnal Gaussian Vol 4, No 4 (2015): Jurnal Gaussian Vol 4, No 3 (2015): Jurnal Gaussian Vol 4, No 2 (2015): Jurnal Gaussian Vol 4, No 1 (2015): Jurnal Gaussian Vol 3, No 4 (2014): Jurnal Gaussian Vol 3, No 3 (2014): Jurnal Gaussian Vol 3, No 2 (2014): Jurnal Gaussian Vol 3, No 1 (2014): Jurnal Gaussian Vol 2, No 4 (2013): Jurnal Gaussian Vol 2, No 3 (2013): Jurnal Gaussian Vol 2, No 2 (2013): Jurnal Gaussian Vol 2, No 1 (2013): Jurnal Gaussian Vol 1, No 1 (2012): Jurnal Gaussian More Issue