cover
Contact Name
Dermiyati
Contact Email
dermiyati.1963@fp.unila.ac.id
Phone
+62721781822
Journal Mail Official
j.tnhtrop@gmail.com
Editorial Address
Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No. 1, Bandarlampung 35145, Indonesia
Location
Kota bandar lampung,
Lampung
INDONESIA
Journal of Tropical Soils
Published by Universitas Lampung
ISSN : 0852257X     EISSN : 20866682     DOI : http://dx.doi.org/10.5400/jts.v25i1
Core Subject : Agriculture, Social,
Journal of Tropical Soils (JTS) publishes all aspects in the original research of soil science (soil physic and soil conservation, soil mineralogy, soil chemistry and soil fertility, soil biology and soil biochemical, soil genesis and classification, land survey and land evaluation, land development and management environmental), and related subjects in which using soil from tropical areas.
Articles 5 Documents
Search results for , issue "Vol. 26 No. 1: January 2021" : 5 Documents clear
An Evaluation of MODIS Global Evapotranspiration Product as Satellite-Based Evapotranspiration Data for Supporting Precision Agriculture in West Papua - Indonesia Faisol, Arif; Indarto, Indarto; Novita, Elida; Budiyono, Budiyono
JOURNAL OF TROPICAL SOILS Vol. 26 No. 1: January 2021
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2021.v26i1.43-49

Abstract

Precision Agriculture has been a significant issue since the middle of the 1980s. Evapotranspiration is one of the main parameters in precision agriculture to analyze real water needs in the agriculture area and managing water resources. Traditionally evapotranspiration estimates by directly measured methods, i.e., lysimeter, pan-evaporation, eddy covariance, Bowen ratio, soil water, and climate data analysis. These methods are expensive techniques with low spatial representativeness. The utilization of remote sensing technology is expected to be an alternative solution for providing evapotranspiration data with a cost-effective and high spatial representative. This research aims to evaluate the MODIS global evapotranspiration as satellite-based evapotranspiration in estimating evapotranspiration in West Papua. Four (4) statistical parameters, i.e., mean error (ME), root means square error (RMSE), relative bias (RB), and mean bias factor (MBF), are using for evaluation. The research showed that MODIS global evapotranspiration was overestimated in estimating evapotranspiration in West Papua. However, MODIS global evapotranspiration has an acceptable accuracy in estimating evapotranspiration in West Papua indicated by ME = 0.66 mm/day, RMSE = 0.94 mm/day, RB = 0.27, and MBF = 0.81. Therefore, MODIS global evapotranspiration can be used as an alternative solution for providing evapotranspiration data in West Papua with a cost-effective.
Water Retention and Saturation Degree of Peat Soil in Sebangau Catchment Area, Central Kalimantan Sajarwan, Akhmat; Jaya, Adi; Banuwa, Irwan Sukri
JOURNAL OF TROPICAL SOILS Vol. 26 No. 1: January 2021
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2021.v26i1.29-42

Abstract

Water is an essential factor in forming, utilization, management, and sustainability of peat soil. This study was to obtain characteristics of water retention and porosity of peat soil. Peat samples were taken from the Natural Laboratory of Peat Forest, Central Kalimantan at shallow, medium, and deep peat at 0-50cm (surface) and 50-100 cm (subsurface), while laboratory analyses carried out at Soil Laboratory, Universitas Gajahmada. The result shows that volumetric moisture content at the surface lower than subsurface, except for deep peat. The total pore for the surface was 84.67-86.98%, while subsurface layers were 83.53-86.93%. For surface layer, saturated degree (S) medium peat higher than shallow and deep peat, while for shallow subsurface peat higher than medium and deep peat. S value all pF levels of surface for medium and deep peat higher than the subsurface. Bulk density for surface was 0.094g.cm-3 (rb(wet)) and 0.22g.cm-3(rb (dry)) for shallow peat while medium peat are 0.084–0.087g.cm-3(rb(wet)) and 0.18–0.20g.cm-3(rb(dry)), deep peat 0.064–0.090g.cm-3(rb(wet)) and 0.11–0.16g.cm-3(rb(dry)). For subsurface, bulk density of medium peat are 0.094–0.107g.cm-3 (rb(wet)) and 0.16–0.20g.cm-3 (rb(dry)), deep peat are 0.067–0.090g.cm-3 (rb(wet)) and 0.10–0.17g.cm-3 (rb(wet)). The particle density of surface and subsurface for shallow peat higher than medium and deep peat, with values 0.67-0.77g.cm3, 0.61-0.66g.cm3, and 0.53-0.63g.cm3 for shallow, medium, and deep peat, respectively. Total pores for the surface layer decrease with increasing dry bulk density (R = 0.624) and particle density (R = 0.375). This fact seems to confirm a directly proportional relationship between parameters bulk and particle density with total pores.
The Phytoextraction of Copper from Tropical Soil 21 Years after Amendment with Heavy-Metal Containing Waste Silva, Gianluigi; Aini, Septi Nurul; Buchari, Henrie; Salam, Abdul Kadir
JOURNAL OF TROPICAL SOILS Vol. 26 No. 1: January 2021
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2021.v26i1.11-18

Abstract

Several particular plants are suggested to extract significant parts of heavy metals from soils and accumulate them in their roots and shoots.  This research aimed to study the phytoextraction of Cu by several plants from heavy-metal contaminated tropical soils.  Soil samples collected from plots treated in 1998 with 0, 15 and 60 Mg industrial waste ha-1 were planted with three different plants, i.e., caisim, water spinach, and lettuce.   Plant parts (roots and shoots) and soil samples were harvested after a four-week growth period and analyzed for plant and soil Cu.  The results show that the growth of plants was depressed by the increase in the soil Cu (extracted by 1 N HNO3) as affected by waste levels, with water spinach being the most progressive and produced the most significant biomass.  The absorption of Cu by caisim and water spinach increased with the soil extracted Cu (linear R2 = 0.71* for caisim and 0.32* for water spinach) and accumulated greater in plant roots than that in shoots. The translocation factor (TF << 1.00) indicates that all plants were good Cu phytostabilizators rather than phytoextractors, with water spinach being the best Cu extractor.
Vermicompost Buffering Capacity to Reduce Acidification of Pb and Cd Contaminated Inceptisols and Entisols Muktamar, Zainal; Hermawan, Bandi; Wulandari, Wulandari; Prawito, Priyono; Sudjatmiko, Sigit; Setyowati, Nanik; Fahrurrozi, Fahrurrozi; Chozin, Mochammad
JOURNAL OF TROPICAL SOILS Vol. 26 No. 1: January 2021
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2021.v26i1.1-9

Abstract

Contamination of  heavy metals on the soil leads to an increase in its acidity. Vermicompost application is commonly used to improve the properties of soil. The study was carried out to determine the reduction of the acidity in Pb and Cd contaminated soils under the application of vermicompost. Two laboratory experiments were set using Completely Randomized Design (CRD) with two factors. The first factor was soil samples, vis Inceptisols, and Entisols, and the second factor was the rates of vermicompost, consisted of 0, 5, 10, 15 g kg-1. The treatment combination was repeated three times. The soils were pretreated with 10 mg kg-1 Pb or Cd using Pb(NO3)2 and Cd(NO3)2. Three hundred kg soil sample was incorporated with vermicompost and placed in a 500 ml plastic bottle. The mixtures were incubated for eight weeks, and the moisture of the soil was maintained at field capacity. The acidity and soil temperature were monitored every week. The study indicated that Pb contaminated soil acidity increased to the sixth week of the incubation and decreased afterward. However, the acidity of Cd contaminated soil was consistently increased during the incubation. Treatment of vermicompost significantly lowered the acidity of both Pb and Cd contaminated soils. Contaminated Entisols had a higher response to the application of vermicompost than that of Inceptisols. This finding is significant in assessing acidity risk and possible management intervention for Pb and Cd contaminated soils.
Revegetation of Critical Land with Gaharu (Aquilaria malaccensis) under Various Ameliorants Application Yuwono, Slamet Budi; Alawiyah, Alawiyah; Riniarti, Melya; Dermiyati, Dermiyati
JOURNAL OF TROPICAL SOILS Vol. 26 No. 1: January 2021
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2021.v26i1.19-28

Abstract

Rehabilitation of post-mining limestone soils is often a challenge due to a lack of nutrients and poor soil humus. The research aims to study the effect of various ameliorants on soil chemical properties, growth, and P uptake of gaharu plant (Aquilaria malaccensis) in post-mining limestone soil for revegetation of critical land. The research was conducted in a Completely Randomized Design with three replications. The treatments were P0 (Control, without ameliorant); P1 (Humic Acid, HA, 4 kg ha-1 ); P2 (Phosphate Rocks, PR, 350 kg ha-1 ); P3 (Vesicular Arbuscular Mycorrhizal Fungi, AMF, 500 spores plant-1 ); P4 (HA+AMF); P5 (PR+AMF); and P6 (HA+PR+AMF). Data were analyzed using ANOVA at 95% confidence level and continued with the LSD test. The use of various types of ameliorants (HA, RP, and AMF) significantly increased root length, root volume, wet and dry weight of roots, shoot wet and dry weight, and P uptake of gaharu tree. The best ameliorant in increasing gaharu tree growth was AMF (P3) treatment, and AMF combined with HA (P4) treatment. Thus, for revegetation of critical land, especially post-mining limestone land, using gaharu tree requires HA and AMF inoculation.

Page 1 of 1 | Total Record : 5


Filter by Year

2021 2021


Filter By Issues
All Issue Vol 30, No 3: September 2025 (in Progress) Vol. 30 No. 3: September 2025 (in Progress) Vol 30, No 2: May 2025 Vol. 30 No. 2: May 2025 Vol 30, No 1: January 2025 Vol. 30 No. 1: January 2025 Vol 29, No 3: September 2024 Vol. 29 No. 3: September 2024 Vol. 29 No. 2: May 2024 Vol 29, No 2: May 2024 Vol 29, No 1: January 2024 Vol. 29 No. 1: January 2024 Vol. 28 No. 3: September 2023 Vol 28, No 3: September 2023 Vol. 28 No. 2: May 2023 Vol 28, No 2: May 2023 Vol. 28 No. 1: January 2023 Vol 28, No 1: January 2023 Vol 27, No 3: September 2022 Vol. 27 No. 3: September 2022 Vol 27, No 2: May 2022 Vol. 27 No. 2: May 2022 Vol. 27 No. 1: January 2022 Vol 27, No 1: January 2022 Vol 26, No 3: September 2021 Vol. 26 No. 3: September 2021 Vol 26, No 2: May 2021 Vol. 26 No. 2: May 2021 Vol. 26 No. 1: January 2021 Vol 26, No 1: January 2021 Vol 25, No 3: September 2020 Vol. 25 No. 3: September 2020 Vol 25, No 2: May 2020 Vol. 25 No. 2: May 2020 Vol 25, No 1: January 2020 Vol. 25 No. 1: January 2020 Vol 24, No 3: September 2019 Vol. 24 No. 3: September 2019 Vol. 24 No. 2: May 2019 Vol 24, No 2: May 2019 Vol 24, No 1: January 2019 Vol. 24 No. 1: January 2019 Vol. 23 No. 3: September 2018 Vol 23, No 3: September 2018 Vol 23, No 2: May 2018 Vol. 23 No. 2: May 2018 Vol 23, No 1: January 2018 Vol. 23 No. 1: January 2018 Vol. 22 No. 3: September 2017 Vol 22, No 3: September 2017 Vol. 22 No. 2: May 2017 Vol 22, No 2: May 2017 Vol 22, No 1: January 2017 Vol. 22 No. 1: January 2017 Vol. 21 No. 3: September 2016 Vol 21, No 3: September 2016 Vol. 21 No. 2: May 2016 Vol 21, No 2: May 2016 Vol 21, No 1: January 2016 Vol. 21 No. 1: January 2016 Vol 20, No 3: September 2015 Vol. 20 No. 3: September 2015 Vol 20, No 2: May 2015 Vol. 20 No. 2: May 2015 Vol. 20 No. 1: January 2015 Vol 20, No 1: January 2015 Vol. 19 No. 3: September 2014 Vol 19, No 3: September 2014 Vol 19, No 2: May 2014 Vol. 19 No. 2: May 2014 Vol. 19 No. 1: January 2014 Vol 19, No 1: January 2014 Vol 18, No 3: September 2013 Vol. 18 No. 3: September 2013 Vol 18, No 2: May 2013 Vol. 18 No. 2: May 2013 Vol. 18 No. 1: January 2013 Vol 18, No 1: January 2013 Vol. 17 No. 3: September 2012 Vol 17, No 3: September 2012 Vol. 17 No. 2: May 2012 Vol 17, No 2: May 2012 Vol. 17 No. 1: Januari 2012 Vol 17, No 1: Januari 2012 Vol 16, No 3: September 2011 Vol. 16 No. 3: September 2011 Vol. 16 No. 2: May 2011 Vol 16, No 2: May 2011 Vol 16, No 1: January 2011 Vol. 16 No. 1: January 2011 Vol. 15 No. 3: September 2010 Vol 15, No 3: September 2010 Vol. 15 No. 2: May 2010 Vol 15, No 2: May 2010 Vol 15, No 1: January 2010 Vol. 15 No. 1: January 2010 Vol 14, No 3: September 2009 Vol. 14 No. 3: September 2009 Vol 14, No 2: May 2009 Vol. 14 No. 2: May 2009 Vol 14, No 1: January 2009 Vol. 14 No. 1: January 2009 Vol. 13 No. 3: September 2008 Vol 13, No 3: September 2008 Vol 13, No 2: May 2008 Vol. 13 No. 2: May 2008 Vol. 13 No. 1: January 2008 Vol 13, No 1: January 2008 More Issue