cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Bulletin of Electrical Engineering and Informatics
ISSN : -     EISSN : -     DOI : -
Core Subject : Engineering,
Arjuna Subject : -
Articles 76 Documents
Search results for , issue "Vol 8, No 3: September 2019" : 76 Documents clear
Community Reporting System: Road Violation R. Roslan, M.; Ahmad Zabidi, Suriza
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i3.1509

Abstract

In the era of internet and wireless, an online community reporting system that is easy to use and hustle free is much needed to allow the user to place a misconduct report to the relevant authority. The available system is inefficient and time-consuming since mostly are using web-based which makes the user unwilling to make a report to the authority. The objective of this project is to design a system using android application that is cost-effective and easy to use. The scope of this project is on the road violation reporting system. The outcome of the system will provide a user with an easy reporting system and also the authority can manage the report easily. The development of the system is expected to enhance the reporting system and betterment for the community as well as the authority as a whole.
Video Streaming Over Ad hoc On-demand Distance Vector Routing Protocol O. Khalifa, Othman; Eldin Mustafa Ahmed, Diaa; Hassan Abdalla Hashim, Aisha; Yagoub, Mudathir
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i3.1510

Abstract

Video streaming is content sent in compressed form over the netwoks  and viwed the users progressively. The transmission of video with the end goal that it can be prepared as consistent and nonstop stream. The point is that to give client support to client at anyplace and at whatever time. Mobile Ad hoc Networks (MANETs) are considered an attractive nertwork for information transmission in many applications where the customer programme can begin showing the information before the whole record has been transmitted. Ad hoc On-demand Distance Vector (AODV) protocol is considered as one of the most important routing protocols in MANET. However, routing protocols assume a crucial part in transmission of information over the network. This paper investigates the performance of  AODV Routing Protocol under video traffic over PHY  IEEE 802.11g.  The protocol model was developed in OPNET. Different outcomes from simulation based models are analyzed and appropriate reasons are also discussed. A different scenarios of video streaming were used. The metric in terms of throughput, end to end delay, packet delivery ratio and routing overhead were measured. A comparision with GRP and GRP are also reported.
On The Analysis of Received Signal Strength Indicator from ESP8266 Shazwani Rosli, Rafhanah; Hadi Habaebi, Mohamed; Rafiqul Islam, Md
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i3.1511

Abstract

Recently, the concept o Internet of Things has gained a tremendous momentum in the technological world. Internet of Things efficienty connects devices hence improving their quality of life from various aspects. One of the most heavily used device for Internet of Things application is ESP8266 WiFi serial transceiver module. It features access to the Received Signal Strength Indicator readings from the module. In this paper, a characteristic analysis of the Received Signal Strength Indicator readings collected using ESP8266 WiFi serial transceiver module is carried out. The aim is to explore the future possibilities of Received Signal Strength Indicator value as a stand-alone and unique parameter to be used in various applications especially in the domain of Internet of Things. In addition, the potential of the cheap yet sophisticated ESP8266 WiFi serial transceiver module is also highlighted. The findings have shown an insight into the characteristics of Received Signal Strength Indicator readings and how it can be utilized for other different purposes. The findings have brought up a few stimulating issues that may arise from some implementation of Received Signal Strength Indicator readings such as the significant effect of obstruction in the Line of Sight. However, its solution will thrust the Internet of Things’ technological advancements ahead.
Investigation of Time Diversity Gain for Earth to Satellite Link Using Rain Rate Gain Alam, Md Moktarul; Rafiqu, Islam Md.; Badron, Khairayu; Dyana A. R, Farah; Dao, Hassaan; Hassan, M. Rofiqul; Lwas, Ali Kadhim
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i3.1512

Abstract

The utilization of satellites for communication systems has expanded considerably in recent years. C and Ku-bands of frequencies are already congested because of high demand. Future directions of satellite communications are moving towards Ka and V-bands. Earth to satellite communications are moving towards higher frequency bands in future which are more sensitive to environment. Rain causes severe degradation in performances at higher frequency bands specially in tropical regions. Several mitigation techniques are proposed to design reliable system. Time diversity is one of the potential candidate for it. However, time diversity analysis requires measured rain attenuation data. For future high frequency link design those data are not available at most of the places. This thesis proposes a method to utilize 1-minute rain rate to analyze time diversity technique at any desired frequency. This paper proposes a method to utilize 1-minute rain rate to analyse time diversity rain rate gain. In proposed method, it is assumed that rain rate gain with delay can represent rain attenuation gain with delay for same period of time at same location. The characteristics of rain rate and rain attenuation almost same because the attenuation causes due to rain.  One year measured rain rate in Malaysia is used to predict rain rate gain. The measured gain at 12.225 GHz signal is compared with that predicted by ITU-R based on rain rate measurement and is found good agreement. Hence it is recommended that the time diversity gain can be predicted using measured rain rate for any desired frequencies
Modeling and Development of Radio Frequency Planar Interdigital Electrode Sensors Farhan Affendi bin Yunos, Muhammad; Nurashikin Nordin, Anis; Khan, Sheroz
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i3.1513

Abstract

The interdigital sensor has been implemented in various field of applications such as microwave device, chemical sensor and biological sensor. This work describes the design and fabrication of an interdigital sensor (IDS) design that has the potential of estimating blood glucose levels using capacitive measurements. The IDS was first designed using theoretical equations and later was optimized by using CST Microwave Studio®. The electrode widths of the sensor were varied from 0.5mm to 0.7mm and the S11 reflection characteristics were simulated.  Upon completion of simulations, the sensor was fabricated using copper clad FR4 boards. The fabricated sensors were measured using a vector network analyzer (VNA) and produced resonance frequencies of 2.02, 2.11 and 2.14 GHz. The highest Q obtained was 11.72 from the 2.11 GHz sensor.
Smartphone Aided Real-Time Blood Vein Detection System Istiaque Ahmed, Kazi; Hadi Habaebi, Mohamed; Islam, Md Rafiqul
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i3.1514

Abstract

This paper aims to develop a real-time integrated system for the detection of the blood vein utilizing an Android Mobile App. The system is intended to be a low cost solution for medical teams at clinics, emergency rooms and hosptials. The system reduces the enjuries incurred due to inaccuracies during the process of frequent needle injection when blood vein is not visible during patient’s skin inspection. Illuminated infrared light in the blood cells of the vein is absorbed due to the manifestation of the Haemoglobin in blood and the IR non-blocking camera can capture the vein patterns in the IR light spectrum. Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm was used to enhance the pattern of the vein in the Android application developed using OpenCV3. Developed system can detect the veins up to 7mm underneath of human skin in real time with a frame rate of 25fps. This is a far better improvement than commercial systems that can detect veins only below 10mm underneath the skin. Moreover, this system not only focused on needle infusion but also it can be used to indicate the place of bleeding for the clots from the human body strokes, etc. in the upper layer of skin. It can also be used to detect & measure liquids in encapsulated in confined dark bottles, for example, liquid chemical pouring into the bottles in the chemical companies, liquid medicine pouring to bottles, etc. The system can be further developed to detect skin infection and other dermatological diseases underneath the skin.
Design and Optimize Microstrip Patch Antenna Array using the Active Element Pattern Technique Ali, Khamis; Abdul Malek, Norun; Zamani Jusoh, Ahmad; Yasmin Mohamad, Sarah; Zainal Abidin, Zuhairiah; Liza Asnawi, Ani
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i3.1516

Abstract

Microstrip patch antennas are widely used in modern day communication devices due to their light weight, low cost and ease of fabrication. In this paper, we have designed and fabricated two Microstrip Patch Antennas (slotted-ring and truncated-slotted ring) and array at 2.4 GHz for Wireless Local Area Network (WLAN) applications using Computer Simulation Technology, CST. The antenna design consists of rectangular radiating patch on Rogers RT5880 substrate and is excited by using coaxial probe feeding technique. The truncated-slotted ring has been designed on top of the radiating patch to improve bandwidth. The simulation and measurement results of the both antennas are in close agreement with each other. Due to the good agreement of simulation and measurement results of truncated-slotted ring antenna in comparison with slotted-ring antenna, it has been selected for antenna array design. The simulated and measured S11 of truncated-slotted ring antenna shows -21dB and -15.6 dB at 2.4 GHz respectively. Then, the antenna has been formed into 1x4 array in order to observe its beamforming capability. The proposed antenna array is suitable for 802.11b/g/n Wi-Fi standard which is proposed to be used for IoT.
Distinctive Features for Normal and Crackles Respiratory Sounds using Cepstral Coefficients H. Mohd Johari, N.; Malik, Abdul; A. Sidek, K.
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i3.1517

Abstract

Classification of respiratory sounds between normal and abnormal is very crucial for screening and diagnosis purposes. Lung associated diseases can be detected through this technique. With the advancement of computerized auscultation technology, the adventitious sounds such as crackles can be detected and therefore diagnostic test can be performed earlier. In this paper, Linear Predictive Cepstral Coefficient (LPCC) and Mel-frequency Cepstral Coefficient (MFCC) are used to extract features from normal and crackles respiratory sounds. By using statistical computation such as mean and standard deviation (SD) of cepstral based coefficients it can differentiate between crackles and normal sounds. The statistical computations of the cepstral coefficient of LPCC and MFCC show that the mean LPCC except for the third coefficient and first three statistical coefficient values of MFCC’s SD provide distinctive feature between normal and crackles respiratory sounds. Hence, LPCCs and MFCCs can be used as feature extraction method of respiratory sounds to classify between normal and crackles as screening and diagnostic tool.
Efficient 3D Stereo Vision Stabilization for Multi-camera Viewpoints Shah Newaj Bhuiyan, Sharif; O. Khalifa, Othman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i3.1518

Abstract

In this paper, an algorithm is developed in 3D Stereo vision to improve image stabilization process for multi-camera viewpoints. Finding accurate unique matching key-points using Harris Laplace corner detection method for different photometric changes and geometric transformation in images. Then improved the connectivity of correct matching pairs by minimizing the global error using spanning tree algorithm. Tree algorithm helps to stabilize randomly positioned camera viewpoints in linear order. The unique matching key-points will be calculated only once with our method. Then calculated planar transformation will be applied for real time video rendering. The proposed algorithm can process more than 200 camera viewpoints within two seconds.
Multiband Antenna using Stacked Series Array for Ka-Band Application Nibir, Rauful; Rafiqul, Islam Md.; Hadi Habaebi, Mohamed; Yasmin, Sarah; Mukit, Naimul; Rafiq, Sarah; O, Abdinasir S.
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i3.1519

Abstract

In this paper, a multiband stack series array antenna is designed in order to attain solutions for the future 28 GHz Ka-band application. Double layer substrate Technology is utilized to accomplish multiple resonant frequencies with higher data transfer capacities due to high bandwidth. The designed antenna is dependent on twofold layer consisting patches and resonators in different layers stacked together. The designed multiband antennas can resonate at single band of (28 GHz), dual band of (28 and 30 GHz) and triple band of (24.18, 26 and 28.453). The results achieved in the simulation are later fabricated and tested. The test result illustrates that the antennas have wide bandwidth, high gain and even higher efficiencies. All the proposed antenna configurations have demonstrated a decent possibility for 5G millimeter wave (mmwave) application