cover
Contact Name
Yeni Kustiyahningsih
Contact Email
ykustiyahningsih@trunojoyo.ac.id
Phone
+6282139239387
Journal Mail Official
kursor@trunojoyo.ac.id
Editorial Address
Informatics Department, Engineering Faculty University of Trunojoyo Madura Jl. Raya Telang - Kamal, Bangkalan 69162, Indonesia Tel: 031-3012391, Fax: 031-3012391
Location
Kab. bangkalan,
Jawa timur
INDONESIA
Jurnal Ilmiah Kursor
ISSN : 02160544     EISSN : 23016914     DOI : https://doi.org/10.21107/kursor
Core Subject : Science,
Jurnal Ilmiah Kursor is published in January 2005 and has been accreditated by the Directorate General of Higher Education in 2010, 2014, 2019, and until now. Jurnal Ilmiah Kursor seeks to publish original scholarly articles related (but are not limited) to: Computer Science. Computational Intelligence. Information Science. Knowledge Management. Software Engineering. Publisher: Informatics Department, Engineering Faculty, University of Trunojoyo Madura
Articles 5 Documents
Search results for , issue "Vol 12 No 1 (2023)" : 5 Documents clear
ANALYSIS OF FATIGUE AMONG BAGGAGE HANDLERS USING THE FACIAL ACTION CODING SYSTEM (FACS) Samuel Goesniady; Wilma Latuny
Jurnal Ilmiah Kursor Vol 12 No 1 (2023)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/kursor.v12i01.308

Abstract

Baggage workers is a livelihood in the informal sector which is carried out by selling services to transport goods/materials from one place to another. The workload carried by the workers will determine how much income they receive in a day. For this reason, baggage workers tend to scramble to transport goods to earn more income, so sometimes baggage workers will carry goods beyond their capacity. The Facial Action Coding System (FACS) is a comprehensive anatomy-based system for visually describing all visible facial movements. It breaks down facial expressions into individual components of muscle movement, called Action Units (AUs). Given the fact that FACS can identify fatigue by analyzing human facial expressions, the authors took the initiative to explore the facial expressions of workers' fatigue with FACS automation on CERT. In this research, it was found that there was an indication of fatigue in baggage workers. This can be seen from the significant changes in the value of action units indicating fatigue for baggage workers before and after work, including an increase in the value of AU 01, AU 15, AU 20 and AU 23, while the AU 12 which is identical to the smile expression experienced a decrease in intensity in most of the subjects and the different test results from the five Action Units showed that there were significant differences between the Action Units before and after work.
OPTIMIZATION OF K-MEANS CLUSTERING USING PARTICLE SWARM OPTIMIZATION ALGORITHM FOR GROUPING TRAVELER REVIEWS DATA ON TRIPADVISOR SITES I Made Satria Bimantara; I Made Widiartha
Jurnal Ilmiah Kursor Vol 12 No 1 (2023)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/kursor.v12i01.269

Abstract

K-Means Algorithm can be used to group tourists based on reviews on tourist destination objects. This algorithm has a weakness that is sensitive to the determination of the initial centroid. The initial centroid that is determined at random will decreasing the level accuracy, often gets stuck at the local optimum, and gets a random solution. Optimization algorithms such as PSO can overcome this by determining the optimal initial centroid. The optimal number of clusters (K) will be determined using the Elbow method by calculating the SSE value of the resulting cluster. The average Silhouette Coefficient (SC) is used to measure the quality of the clusters produced by the K-Means Algorithm with and without the PSO Algorithm. This study uses secondary data obtained from the UCI Machine Learning Repository with the name Travel Reviews Data Set which consists of 980 records and 10 attributes. The test results show that K=2 is the optimal number of clusters. The K-Means and PSO Algorithm gives an average SC value of 0.300358 which is better than without the PSO Algorithm of 0.300076. The optimal PSO hyperparameter generated is the number of particles=30, \varphi_1=2.2, and {\ \varphi}_2=3 at maximum iteration of 100.
APPLICATION OF MULTISTAGE CLUSTERING FOR MAPPING ECONOMIC POTENTIAL IN EAST JAVA PROVINCE Ronny Susetyoko; Edi Satriyanto; Alfi Fadliana; Muhammad Syahfitra
Jurnal Ilmiah Kursor Vol 12 No 1 (2023)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/kursor.v12i01.325

Abstract

This study aims to map the economic potential in East Java Province based on GRDP according to business field category. Multistage clustering is a method developed for outlier data and datasets with large variance. Multistage clustering is a combination of Ordering Points to Identify the Clustering Structure (OPTICS) and K-Means. The first stage was grouped using OPTICS. The outlier data resulting from the clustering stage is used as a dataset in the second stage using K-Means. The performance of this method is compared with several other methods, namely: K-Means, DBSCAN – K-Means, Agglomerative, Fuzzy C-Means (FCM), Possibilistic C-Means (PCM), and Fuzzy Possibilistic C-Means (FPCM) based on the characteristics of the Silhouette score and Davies-Bouldin score. Multistage clustering was chosen as the best method with a Silhouette score of 0.442 and Davies-Bouldin score of 0.388. With the Elbow method and the two metrics, the optimum number of clusters is 8 clusters. The results of this mapping method, the City of Surabaya forms a separate cluster which has the highest economic potential in 15 categories of business fields. Next Gresik, Pasuruan, Sidoarjo, and Probolinggo have the second highest economic potential with 10 categories of business fields ranking in the top 3.
SENTIMENT ANALYSIS OF LEAGUE OF LEGENDS: WILD RIFT REVIEWS ON GOOGLE PLAY USING NAÏVE BAYES CLASSIFIER Khadijah Khadijah; Nur Sabilly; Fajar Agung Nugroho
Jurnal Ilmiah Kursor Vol 12 No 1 (2023)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/kursor.v12i01.328

Abstract

League of Legends: Wild Rift is a mobile game with more than 48 million downloads worldwide. The game publishers could earn profit from selling item in the game (in-app purchases). Performance of player and players' impressions during the first week usually determine whether players would made in-app purchases or not. Therefore, it is important to understand the player opinions so that the game publisher could encourage the players to increase the in-app purchases. Therefore, this research utilized sentiment analysis to study the player opinions about the League of Legends: Wild Rift game based on the reviews given by the players on the Google Play Store. The sentiment analysis was applied by using Naive Bayes Classifier (NBC) algorithm which was well known for achieving good accuracy in the sentiment analysis task. In addition, data preprocessing and feature extraction should be carried out properly to increase the accuracy of the classifier. Therefore, this research investigated the impact of using stemming and transformation of informal words into formal words in the preprocessing stages, then compared two feature extraction algorithms, namely Term Frequency – Inverse Document Frequency (TF-IDF) and Bag of Words (BOW). From the experiment, it was found that the use of stemming could decrease the accuracy of the classifier, but the use of transformation of non-standard words into standard words could improve the performance of the classifier, for both feature extractions, BOW and TF-IDF. In this case, BOW feature extraction was able to achieve better performance, compared to TF-IDF. The best model was achieved when not using stemming, applying the transformation of informal words into formal words, and using BOW bigram feature extraction, with the accuracy of 79,3%, precision of 82.10%, recall of 83.50%, and f1-score of 82,8.10%.
SEGMENTATION OF LUNG CANCER IMAGE BASED ON CYTOLOGIC EXAMINATION USING THRESHOLDING METHOD Rulisiana Widodo; Tessy Badriyah; Iwan Syarif; Willy Sandhika
Jurnal Ilmiah Kursor Vol 12 No 1 (2023)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/kursor.v12i01.277

Abstract

Lung cancer is the most dangerous cases which mostly attacks the man with the biggest causes of smoking. This cancer threatens the second largest death after heart attack, lung cancer cases increase significantly every year in various countries. Several methods have been established to detect lung cancer, including Computed Tomography of the thorax, sputum examination and cytology examination. The most decisive examination is through cytologic examination of the pleural fluid. However, the current state of biopsy performed by doctors does not always get a lot of specimens, making it difficult to determine the presence of cancer cells in the lungs. Cytological examination through the pleural fluid has difficulty in detecting cell images. The image of pleural fluid that has a high density between cells will produce an image with low detail, while an image with a low density will produce an image with high detail. Image segmentation is an important part in determining the cellular anatomy of pleural fluid to characterize images with cancer or normal categories. We propose the methodology of research by using group images to separate objects from other objects by highlighting important parts using image segmentation on pleural fluid of patients suspected of having lung cancer. Thresholding method used to see the comparison is Adaptive Thresholding, binary thresholding and Otsu Thresholding. The classification results of the three methods show a high accuracy of 99% on binary thresholding, then 97% accuracy on otsu thresholding and the lowest accuracy of 96% on adaptive thresholding, the three methods are considered to increase in proportion to the addition of the epoch parameter.

Page 1 of 1 | Total Record : 5