cover
Contact Name
Yeni Kustiyahningsih
Contact Email
ykustiyahningsih@trunojoyo.ac.id
Phone
+6282139239387
Journal Mail Official
kursor@trunojoyo.ac.id
Editorial Address
Informatics Department, Engineering Faculty University of Trunojoyo Madura Jl. Raya Telang - Kamal, Bangkalan 69162, Indonesia Tel: 031-3012391, Fax: 031-3012391
Location
Kab. bangkalan,
Jawa timur
INDONESIA
Jurnal Ilmiah Kursor
ISSN : 02160544     EISSN : 23016914     DOI : https://doi.org/10.21107/kursor
Core Subject : Science,
Jurnal Ilmiah Kursor is published in January 2005 and has been accreditated by the Directorate General of Higher Education in 2010, 2014, 2019, and until now. Jurnal Ilmiah Kursor seeks to publish original scholarly articles related (but are not limited) to: Computer Science. Computational Intelligence. Information Science. Knowledge Management. Software Engineering. Publisher: Informatics Department, Engineering Faculty, University of Trunojoyo Madura
Articles 5 Documents
Search results for , issue "Vol 8 No 1 (2015)" : 5 Documents clear
MODELLING AND SIMULATION OF INDUSTRIAL HEAT EXCHANGER ETWORKS UNDER FOULING CONDITION USING INTEGRATED NEURAL NETWORK AND HYSYS Totok R. Biyanto; Roekmono Roekmono; Andi Rahmadiansyah; Aulia Siti Aisyah; Purwadi A. Darwito; Tutug Dhanardono; Titik Budiati
Jurnal Ilmiah Kursor Vol 8 No 1 (2015)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28961/kursor.v8i1.70

Abstract

Fouling is a deposit inside heat exchanger network in a refinery has been identified as a major problem for efficient energy recovery. This heat exchanger network is also called Crude Preheat Train (CPT). In this paper, Multi Layer Perceptron (MLP) neural networks with Nonlinear Auto Regressive with eXogenous input (NARX) structure is utilized to build the heat exchanger fouling resistant model in refinery CPT and build predictive maintenance support tool based on neural network and HYSYS simulation model. The complexity and nonlinierity of the nature of the heat exchanger fouling characteristics due to changes in crude and product operating conditions, and also crude oil blends in the feed stocks have been captured very accurate by the proposed software. The RMSE is used to indicate the performance of the proposed software. The result shows that the average RMSE of integrated model in predicting outlet temperature of heat exchangerTH,out and TC,out between the actual and predicted values are determined to be 1.454 °C and 1.0665 °C, respectively. The integrated model is ready to usein support plant cleaning scheduling optimization, incorporate with optimization software.
CONTENT-BASED IMAGE RETRIEVAL USING EXPRESSION SENSITIVITY BY FUZZY INFERENCE SYSTEM Sukmawati Nur Endah; Priyo Sidik Sasongko; Helmie Arif Wibawa
Jurnal Ilmiah Kursor Vol 8 No 1 (2015)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28961/kursor.v8i1.71

Abstract

Image retrieval can be divided into two types context-based and the content-based. Image retrieval based on the content refers to the image features such as color, texture, shape, semantics or sensations. This paper addresses the content-base image retrieval system based on expression sensitivity. It can be image or text query for input the system. Based on Itten theory, expression sensitivity consist of warm, cold, relax, anxious, and life. The research system uses two fuzzy inference system. Firstly, fuzzy inference system is used to decide image region of color. The image size is 256 x 256 pixel. Output the first fuzzy inference system is input for the second fuzzy inference system. The second fuzzy inference system is used to determined expression sensitivity of image. Degree of accuracy based on respondent from 50 images and 20 respondents is 42% for text query and 55% for image query. The further research, it can be used for other image such as medical image with certain criteria.
A MODIFIED PARTICLE SWARM OPTIMIZATION WITH RANDOM ACTIVATION FOR INCREASING EXPLORATION Alrijadjis Alrijadjis; Shenglin Mu; Kanya Tanaka; Shota Nakashima
Jurnal Ilmiah Kursor Vol 8 No 1 (2015)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28961/kursor.v8i1.72

Abstract

Particle Swarm Optimization (PSO) is a popular optimization technique which is inspired by the social behavior of birds flocking or fishes schooling for finding food. It is a new metaheuristic search algorithm developed by Eberhart and Kennedy in 1995. However, the standard PSO has a shortcoming, i.e., premature convergence and easy to get stack or fall into local optimum. Inertia weight is an important parameter in PSO, which significantly affect the performance of PSO. There are many variations of inertia weight strategies have been proposed in order to overcome the shortcoming. In this paper, a new modified PSO with random activation to increase exploration ability, help trapped particles for jumping-out from local optimum and avoid premature convergence is proposed. In the proposed method, an inertia weight is decreased linearly until half of iteration, and then a random number for an inertia weight is applied until the end of iteration. To emphasis the role of this new inertia weight adjustment, the modified PSO paradigm is named Modified PSO with random activation (MPSO-RA). The experiments with three famous benchmark functions show that the accuracy and success rate of the proposed MPSO-RA increase of 43.23% and 32.95% compared with the standard PSO.
CRITICAL TRAJECTORY - EXTREME LEARNING MACHINE TECHNIQUE FOR COMPUTING CRITICAL CLEARING TIME Irrine Budi Sulistiawati; Ardyono Priyadi; Adi Soepriyanto
Jurnal Ilmiah Kursor Vol 8 No 1 (2015)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28961/kursor.v8i1.73

Abstract

Electric power system is called reliable if the system is able to provide power supply without interrupted. However, in large systems changing on the system or disturbance may affect the power supply. Critical clearing time is the time for deciding the system is a stable or an unstable condition. Critical clearing time has also relationship with setting relay protection to keep the system in the stable condition. Prediction of critical real time for online assessment is expected to be used for preventive action system. That’s why critical clearing time still an interesting topic to be investigated.This paper calculating time of Extreme Learning Machine to predict critical clearing tim on system. Before predicted by Extreme Learning Machine, critical clearing time calculated using numerical calculation critical trajectory method with load changing and different fault occuring. Tested by Java-Bali 500 kv 54 machine 25 bus give result that Extreme learning machine is able to perform faster prediction of neural network.
ANALYSIS OF DIALOGUE TECHNIQUE ACCEPTANCE OF DIAGNOSIS BASED CLINICAL DECISION SUPPORT SYSTEM Sulistianingsih N.; Kusumadewi S.; Kariyam Kariyam
Jurnal Ilmiah Kursor Vol 8 No 1 (2015)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28961/kursor.v8i1.69

Abstract

Many decision support systems have been developed to diagnose diseases, but in reality many of these systems fail when applied. This is mainly due to the difficulties in the use of the system due to incompatibility between the system interface and the wishes of physicians. The purpose of this study was to determine the interface design of decision support systems for diseases diagnose in accordance with physician’s wishes and to determine the effects of perceived usefulness and perceived ease of use on the behavioral intention to use the interface design. The data analysis technique used included the Wilcoxon test, the Friedman test, a principal component analysis and a multiple linear regression analysis. From the data analysis it was found that in anamneses and physical examinations, respondents prefer the interface design of natural language processing and a form filling dialogue, whereas in supported examinations, respondents prefer windowing system interface designs. Advanced data analyses found an influence of the variables of perceived usefulness and perceived ease of use on the behavioral intention to use and this influence has a positive effect.

Page 1 of 1 | Total Record : 5