cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota bandung,
Jawa barat
INDONESIA
Journal of the Indonesian Mathematical Society
ISSN : 20868952     EISSN : 24600245     DOI : -
Core Subject : Education,
Journal of the Indonesian Mathematical Society disseminates new research results in all areas of mathematics and their applications. Besides research articles, the journal also receives survey papers that stimulate research in mathematics and their applications.
Arjuna Subject : -
Articles 14 Documents
Search results for , issue "Volume 21 Number 1 (April 2015)" : 14 Documents clear
TWO ASPECTS OF A GENERALIZED FIBONACCI SEQUENCE Tuwankotta, Johan Matheus
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.173.1-17

Abstract

In this paper we study the so-called generalized Fibonacci sequence: $x_{n+2} = \alpha x_{n+1} + \beta x_n, n\in \mathbb{N}$.  We derive an open domain around the origin of the parameter space where the sequence converges to $0$.  The limiting behavior on the boundary of this domain are: convergence to a nontrivial limit, $k$-periodic ($k\in \mathbb{N}$), or quasi-periodic.  We use the ratio of two consecutive terms of the sequence to construct a rational approximation for algebraic numbers of the form: $\sqrt{r}, r\in \mathbb{Q}$.  Using a similar idea, we extend this to higher dimension to construct a rational approximation for  $\sqrt[3]{ a + b\sqrt{c}} +  \sqrt[3]{ a - b\sqrt{c}} + d$.DOI : http://dx.doi.org/10.22342/jims.21.1.173.1-17
A SHORT NOTE ON BANDS OF GROUPS Davvaz, Bijan
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.151.19-23

Abstract

In this paper we give necessary and sufficient  conditions on a semigroup S that it be semilattice of groups, a normal band  of groups, and a matrix of groups.DOI : http://dx.doi.org/10.22342/jims.21.1.151.19-23
NUMERICAL ENTROPY PRODUCTION OF THE ONE-AND-A-HALF-DIMENSIONAL SHALLOW WATER EQUATIONS WITH TOPOGRAPHY Mungkasi, Sudi
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.198.35-43

Abstract

Numerical entropy production can be used as a smoothness indicator of solutions to conservation laws. By definition the entropy production is non-positive. However some authors, using a finite volume method framework, showed that positive overshoots of the numerical entropy production were possible for conservation laws (no source terms involved). Note that the one-and-a-half-dimensional shallow water equations without source terms are conservation laws. A report has been published regarding the behaviour of the numerical entropy production of the one-and-a-half-dimensional shallow water equations without source terms. The main result of that report was that positive overshoots of the numerical entropy production were avoided by use of a modified entropy flux which satisfies a discrete numerical entropy inequality. In the present article we consider an extension problem of the previous report. We take the one-and-a-half-dimensional shallow water equations involving topography. The topography is a source term in the considered system of equations. Our results confirm that a modified entropy flux which satisfies a discrete numerical entropy inequality is indeed required to have no positive overshoots of the entropy production.DOI : http://dx.doi.org/10.22342/jims.21.1.198.35-43
ON FREE IDEALS IN FREE ALGEBRAS OVER A COMMUTATIVE RING Wardati, Khurul; Wijayanti, Indah Emilia; Wahyuni, Sri
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.170.59-69

Abstract

Let A be a free R-algebra where R is a unital commutative ring. An ideal I in A is called a free ideal if it is a free R-submodule with the basis contained in the basis of A. The denition of free ideal and basic ideal in the free R-algebra are equivalent. The free ideal notion plays an important role in the proof of some special properties of a basic ideal that can characterize the free R-algebra. For example, a free R-algebra A is basically semisimple if and only if it is a direct sum of minimal basic ideals in A: In this work, we study the properties of basically semisimple free R-algebras.DOI : http://dx.doi.org/10.22342/jims.21.1.170.59-69
FUZZY TRANSLATIONS OF FUZZY H-IDEALS IN $BCK/BCI$-ALGEBRAS Senapati, Tapan
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.200.45-58

Abstract

In this paper, the concepts of fuzzy translation to fuzzy H-ideals in BCK/BCI-algebras are introduced. The notion of fuzzy extensions and fuzzy mul-tiplications of fuzzy H-ideals with several related properties are investigated. Also,the relationships between fuzzy translations, fuzzy extensions and fuzzy multiplica-tions of fuzzy H-ideals are investigated.DOI : http://dx.doi.org/10.22342/jims.21.1.200.45-58
ON JOINTLY PRIME RADICALS OF (R,S)-MODULES Yuwaningsih, Dian Ariesta; Wijayanti, Indah Emilia
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.199.25-34

Abstract

Let $M$ be an $(R,S)$-module. In this paper a generalization of the m-system set of modules to $(R,S)$-modules is given. Then for an $(R,S)$-submodule $N$ of $M$, we define $\sqrt[(R,S)]{N}$ as the set of $a\in M$ such that every m-system containing $a$ meets $N$. It is shown that $\sqrt[(R,S)]{N}$ is the intersection of all jointly prime $(R,S)$-submodules of $M$ containing $N$. We define jointly prime radicals of an $(R,S)$-module $M$ as $rad_{(R,S)}(M)=\sqrt[(R,S)]{0}$. Then we present some properties of jointly prime radicals of an $(R,S)$-module.DOI : http://dx.doi.org/10.22342/jims.21.1.199.25-34
CORRIGENDUM TO NEW INEQUALITIES ON HOMOGENEOUS FUNCTIONS, J. INDONES. MATH. SOC. 15 (2009), NO. 1, 49-59 Lokesha, L; Nagaraja, K M; Simsak, Y
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.201.71-72

Abstract

This is corrigendum to New Inequalities on Hoomogeneous FunctionsDOI : http://dx.doi.org/10.22342/jims.21.1.201.71-72
A SHORT NOTE ON BANDS OF GROUPS Bijan Davvaz
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.151.19-23

Abstract

In this paper we give necessary and sufficient  conditions on a semigroup S that it be semilattice of groups, a normal band  of groups, and a matrix of groups.DOI : http://dx.doi.org/10.22342/jims.21.1.151.19-23
ON FREE IDEALS IN FREE ALGEBRAS OVER A COMMUTATIVE RING Khurul Wardati; Indah Emilia Wijayanti; Sri Wahyuni
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.170.59-69

Abstract

Let A be a free R-algebra where R is a unital commutative ring. An ideal I in A is called a free ideal if it is a free R-submodule with the basis contained in the basis of A. The denition of free ideal and basic ideal in the free R-algebra are equivalent. The free ideal notion plays an important role in the proof of some special properties of a basic ideal that can characterize the free R-algebra. For example, a free R-algebra A is basically semisimple if and only if it is a direct sum of minimal basic ideals in A: In this work, we study the properties of basically semisimple free R-algebras.DOI : http://dx.doi.org/10.22342/jims.21.1.170.59-69
TWO ASPECTS OF A GENERALIZED FIBONACCI SEQUENCE Johan Matheus Tuwankotta
Journal of the Indonesian Mathematical Society Volume 21 Number 1 (April 2015)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.21.1.173.1-17

Abstract

In this paper we study the so-called generalized Fibonacci sequence: $x_{n+2} = \alpha x_{n+1} + \beta x_n, n\in \mathbb{N}$.  We derive an open domain around the origin of the parameter space where the sequence converges to $0$.  The limiting behavior on the boundary of this domain are: convergence to a nontrivial limit, $k$-periodic ($k\in \mathbb{N}$), or quasi-periodic.  We use the ratio of two consecutive terms of the sequence to construct a rational approximation for algebraic numbers of the form: $\sqrt{r}, r\in \mathbb{Q}$.  Using a similar idea, we extend this to higher dimension to construct a rational approximation for  $\sqrt[3]{ a + b\sqrt{c}} +  \sqrt[3]{ a - b\sqrt{c}} + d$.DOI : http://dx.doi.org/10.22342/jims.21.1.173.1-17

Page 1 of 2 | Total Record : 14


Filter by Year

2015 2015


Filter By Issues
All Issue Vol. 31 No. 4 (2025): DECEMBER Vol. 31 No. 3 (2025): SEPTEMBER Vol. 31 No. 2 (2025): JUNE Vol. 31 No. 1 (2025): MARCH Vol. 30 No. 3 (2024): NOVEMBER Vol. 30 No. 2 (2024): JULY VOLUME 30 NUMBER 1 (MARCH 2024) VOLUME 29 NUMBER 3 (NOVEMBER 2023) VOLUME 29 NUMBER 2 (JULY 2023) VOLUME 29 NUMBER 1 (MARCH 2023) VOLUME 28 NUMBER 3 (NOVEMBER 2022) VOLUME 28 NUMBER 2 (JULY 2022) VOLUME 28 NUMBER 1 (MARCH 2022) VOLUME 27 NUMBER 3 (November 2021) VOLUME 27 NUMBER 2 (July 2021) VOLUME 27 NUMBER 1 (MARCH 2021) VOLUME 26 NUMBER 3 (NOVEMBER 2020) Volume 26 Number 2 (July 2020) Volume 26 Number 1 (March 2020) Volume 25 Number 3 (November 2019) Volume 25 Number 2 (July 2019) Volume 25 Number 1 (March 2019) Volume 24 Number 2 (October 2018) Volume 24 Number 1 (April 2018) Volume 23 Number 2 (October 2017) Volume 23 Number 1 (April 2017) Volume 22 Number 2 (October 2016) Volume 22 Number 1 (April 2016) Volume 21 Number 2 (October 2015) Volume 21 Number 1 (April 2015) Volume 20 Number 2 (October 2014) Volume 20 Number 1 (April 2014) Volume 19 Number 2 (October 2013) Volume 19 Number 1 (April 2013) Volume 18 Number 2 (October 2012) Volume 18 Number 1 (April 2012) Volume 17 Number 2 (October 2011) Volume 17 Number 1 (April 2011) Special Edition, Year 2011 Volume 16 Number 2 (October 2010) Volume 16 Number 1 (April 2010) Volume 15 Number 2 (October 2009) Volume 15 Number 1 (April 2009) Volume 14 Number 2 (October 2008) Volume 14 Number 1 (April 2008) Volume 13 Number 2 (October 2007) Volume 13 Number 1 (April 2007) More Issue