cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Telematika : Jurnal Informatika dan Teknologi Informasi
ISSN : 1829667X     EISSN : 24609021     DOI : 10.31315
Core Subject : Engineering,
Arjuna Subject : -
Articles 361 Documents
Enhancing The Accuracy of Small Object Detection In Traffic Safety Attributes Using Yolov11 And Esrgan: Peningkatan Akurasi Deteksi Objek Kecil pada Atribut Keselamatan Berkendara Menggunakan Yolov11 dan ESRGAN Pinem, Tuahta Hasiholan; Haris, Muhammad
Telematika Vol 22 No 3 (2025): Edisi Oktober 2025
Publisher : Jurusan Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/telematika.v22i3.14800

Abstract

This study aims to detect motorcycle rider attributes, specifically helmets and side mirrors, using a deep learning approach combining YOLOv11 and ESRGAN models. The proposed model addresses challenges in attribute detection under real-world conditions, such as low-resolution images, varying angles, and uneven lighting. The dataset comprises images of motorcycle riders captured by surveillance cameras (CCTV), which underwent preprocessing, augmentation, and resolution enhancement using ESRGAN to improve input quality. The results demonstrate that ESRGAN significantly enhances the performance of YOLOv11, particularly for high-resolution images. The YOLOv11 + ESRGAN model with 300 epochs achieved the best performance, with precision of 75.8%, recall of 69.1%, and an F1-score of 0.7 during testing. During validation, the model reached a precision of 0.826 and recall of 0.797, indicating good generalization capabilities. Compared to the YOLOv11 model without ESRGAN, this combination significantly improved accuracy, especially in detecting small attributes such as side mirrors. This study suggests further exploration with larger and more diverse datasets and fine-tuning to enhance detection accuracy. Additionally, integrating the model into real-world systems based on edge computing can accelerate real-time inference and reduce reliance on cloud-based servers. With broader implementation, this model has the potential to improve the efficiency and safety of AI-powered traffic monitoring systems.

Filter by Year

2010 2025


Filter By Issues
All Issue Vol 22 No 3 (2025): Edisi Oktober 2025 Vol 22 No 2 (2025): Edisi Juni 2025 Vol 22 No 1 (2025): Edisi Februari 2025 Vol 21 No 3 (2024): Edisi Oktober 2024 Vol 21 No 2 (2024): Edisi Juni 2024 Vol 21 No 1 (2024): Edisi Pertama 2024 Vol 21, No 1 (2024): Edisi Februari 2024 Vol 20, No 3 (2023): Edisi Oktober 2023 Vol 20 No 3 (2023): Edisi Oktober 2023 Vol 20, No 2 (2023): Edisi Juni 2023 Vol 20 No 2 (2023): Edisi Juni 2023 Vol 20 No 1 (2023): Edisi Februari 2023 Vol 20, No 1 (2023): Edisi Februari 2023 Vol 19, No 3 (2022): Edisi Oktober 2022 Vol 19, No 2 (2022): Edisi Juni 2022 Vol 19, No 1 (2022): Edisi Februari 2022 Vol 18, No 3 (2021): Edisi Oktober 2021 Vol 18, No 2 (2021): Edisi Juni 2021 Vol 18, No 1 (2021): Edisi Februari 2021 Vol 17, No 2 (2020): Edisi Oktober 2020 Vol 17, No 1 (2020): Edisi April 2020 Vol 16, No 2 (2019): Edisi Oktober 2019 Vol 16, No 1 (2019): Edisi April 2019 Vol 15, No 2 (2018): Edisi Oktober 2018 Vol 15, No 1 (2018): Edisi April 2018 Vol 14, No 2 (2017): Edisi Oktober 2017 Vol 14, No 1 (2017): Edisi April 2017 Vol 13, No 2 (2016): Edisi Juli 2016 Vol 13, No 1 (2016): Edisi Januari 2016 Vol 12, No 2 (2015): Edisi Juli 2015 Vol 12, No 1 (2015): Edisi Januari 2015 Vol 11, No 1 (2014): Edisi Juli 2014 Vol 10, No 2 (2014): Edisi Januari 2014 Vol 10, No 1 (2013): Juli 2013 Vol 9, No 2 (2013): Edisi Januari 2013 Vol 9, No 1 (2012): Edisi Juli 2012 Vol 8, No 2 (2012): Edisi Januari 2012 Vol 8, No 1 (2011): Edisi Juli 2011 Vol 7, No 2 (2011): Edisi Januari 2011 Vol 7, No 1 (2010): Edisi Juli 2010 Vol 6, No 2 (2010): Edisi Januari 2010 More Issue