cover
Contact Name
Agung Nugroho
Contact Email
jmfs@lppm.itb.ac.id
Phone
+6222-86010051
Journal Mail Official
jmfs@lppm.itb.ac.id
Editorial Address
ITB Journal Publisher, LPPM ITB, Center for Research and Community Services (CRCS) Building 6th & 7th Floor , Jl. Ganesha No. 10 Bandung 40132, Indonesia
Location
Kota bandung,
Jawa barat
INDONESIA
Journal of Mathematical and Fundamental Sciences
ISSN : 23375760     EISSN : 23385510     DOI : https://doi.org/10.5614/j.math.fund.sci.
Core Subject : Science, Education,
Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health, Medical, Pharmacy), Mathematics, Physics, and Statistics.
Articles 3 Documents
Search results for , issue "Vol. 9 No. 3 (1975)" : 3 Documents clear
Ultrastructure of Septa in Sclerotinia sclerotiorum Buddy Dani Kosasih
Journal of Mathematical and Fundamental Sciences Vol. 9 No. 3 (1975)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. An electron microscope study has been done on the structure of septum and its associations of Sclerotinia sclerotiorum (Lib.) de Bary. This septum consists of a cross-wall containing two electron-dense layers separated by an electron-transparent central lamella. The central pore in the cross-wall is partially to completely blocked by cell inclusions called Woronin bodies, which are electron-dense and membrane-bound. Ringkasan. Pengamatan jamur penyebab penyakit tumbuhan, Sclerotinia sclerotiorum (Lib.) de Bary dengan menggunakan mikroskop elektron telah dikerjakan dalam laporan ini, terutama sekali mengenai dinding melintang dari pada hypha dan benda-benda sel lainnya yang selalu berhubungan erat sekali dengan celah di antara dinding melintang, yang disebut "Woronin bodies". Dinding melintang, tediri dari tiga lapis, yaitu dua lapis yang banyak menerima electron (electron-dense layers) dan dibagian tengahnya dipisahkan oleh selapis bagian yang tembus cahaya (electron-transparent central lamella). Celah pada dinding melintang sering sekali disumbat oleh "Waronin bodies".
Morfologi, Makanan serta Habitat dari Rana chalconota dan Rana nicobariensis di Cagar Alam Telaga Pantengan A. Rustama; B.J. Wenno
Journal of Mathematical and Fundamental Sciences Vol. 9 No. 3 (1975)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

RIngkasan. Dalam tahun 1971 di daerah Cagar Alam Telaga Patengan telah dilakukan penelitian mengenai macam makanan, bentuk morfologi, aktifitas dan keadaan lingkungan bagi Rana chalconota dan R. nicobariensis. Disusun pula "checklist" Amphibia yang terdapat di daerah tersebut Analisa isi lambung memperlihatkan bahwa masing-masing katak menyukai jenis serangga yang menempati habitat sama dengan katak pemangsanya.Abstract. Studies on the feeding habits, morphology, activity and environmental condition at Rana chalconota and R. nicobariensis were carried out in 1971 at Telaga Patengan Nature Reserve. A checklist of Amphibia of the studied area is also presented. Analyses of the stomach contents show that each frog feed on insects which are found in the same habitat of respective frog. 
The Multiplication Problem for Spheres Howard Stauffer
Journal of Mathematical and Fundamental Sciences Vol. 9 No. 3 (1975)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. The multiplication problem for spheres is to determine which spheres in Euclidean space Sn-1 -"º En permit a continuous multiplication. This paper presents the topological K-theory proof that it is only possible when n = 1, 2, 4, and 8. These cases correspond to S0 -"º E1, S1 -"º E2, S3 -"º E4, and S7 -"º E8 where the multiplications are given respectively by the real numbers, complex numbers, quaternions, and Cayley numbers.  Ringkasan. Masalah pendarapan bagi bola adalah masalah untuk menentukan bola-bola dalam Ruang Euclid Sn-1 -"º En  membenarkan suatu pendarapan yang kontinu. Tulisan ini menyampaikan bukti teori K topologi bahwa hanya dapat terjadi abila n = 1, 2, 4, dan 8. Kasus ini bersesuaian dengan S0 -"º E1, S1 -"º E2, S3 -"º E4, dan S7 -"º E8 di mana pendarapan-pendarapan diberikan oleh bilangan-bilangan riil, kompleks, kuaternion, dan bilangan Cayley.

Page 1 of 1 | Total Record : 3


Filter by Year

1975 1975


Filter By Issues
All Issue Vol. 56 No. 3 (2024) Vol. 56 No. 1 (2024): (In Progress) Vol. 55 No. 3 (2024) Vol. 55 No. 2 (2023) Vol. 55 No. 1 (2023) Vol. 54 No. 3 (2023) Vol. 54 No. 2 (2022) Vol. 54 No. 1 (2022) Vol. 53 No. 3 (2021) Vol. 53 No. 2 (2021) Vol. 53 No. 1 (2021) Vol. 52 No. 3 (2020) Vol. 52 No. 2 (2020) Vol. 52 No. 1 (2020) Vol. 51 No. 3 (2019) Vol. 51 No. 2 (2019) Vol. 51 No. 1 (2019) Vol. 50 No. 3 (2018) Vol. 50 No. 2 (2018) Vol. 50 No. 1 (2018) Vol. 49 No. 3 (2017) Vol. 49 No. 2 (2017) Vol. 49 No. 1 (2017) Vol. 48 No. 3 (2016) Vol. 48 No. 2 (2016) Vol. 48 No. 1 (2016) Vol. 47 No. 3 (2015) Vol. 47 No. 2 (2015) Vol. 47 No. 1 (2015) Vol. 46 No. 3 (2014) Vol. 46 No. 2 (2014) Vol. 46 No. 1 (2014) Vol. 45 No. 3 (2013) Vol. 45 No. 2 (2013) Vol. 45 No. 1 (2013) Vol. 44 No. 3 (2012) Vol. 44 No. 2 (2012) Vol. 44 No. 1 (2012) Vol. 43 No. 3 (2011) Vol. 43 No. 2 (2011) Vol. 43 No. 1 (2011) Vol. 42 No. 2 (2010) Vol. 42 No. 1 (2010) Vol. 41 No. 2 (2009) Vol. 41 No. 1 (2009) Vol. 40 No. 2 (2008) Vol. 40 No. 1 (2008) Vol. 39 No. 1-2 (2007) Vol. 38 No. 2 (2006) Vol. 38 No. 1 (2006) Vol. 37 No. 2 (2005) Vol. 37 No. 1 (2005) Vol. 36 No. 2 (2004) Vol. 36 No. 1 (2004) Vol. 35 No. 2 (2003) Vol. 35 No. 1 (2003) Vol. 34 No. 2&3 (2002) Vol. 33 No. 3 (2001) Vol. 33 No. 2 (2001) Vol. 33 No. 1 (2001) Vol. 32 No. 2 (2000) Vol. 32 No. 1 (2000) Vol. 31 No. 3 (1999) Vol. 31 No. 2 (1999) Vol. 31 No. 1 (1999) Vol. 30 No. 3 (1998) Vol. 30 No. 2 (1998) Vol. 30 No. 1 (1998) Vol. 29 No. 1/2 (1996) Vol. 27 No. 3 (1994) Vol. 27 No. 2 (1994) Vol. 25 No. 2/3 (1992) Vol. 25 No. 1 (1992) Vol. 24 No. 2/3 (1991) Vol. 24 No. 1 (1991) Vol. 23 No. 1 (1990) Vol. 22 No. 1/2/3 (1989) Vol. 21 No. 2/3 (1988) Vol. 21 No. 1 (1988) Vol. 20 No. 1/2 (1987) Vol. 20 No. 3 (1987) Vol. 19 No. 2/3 (1986) Vol. 19 No. 1 (1986) Vol. 18 No. 2/3 (1985) Vol. 18 No. 1 (1985) Vol. 17 No. 3 (1984) Vol. 17 No. 2 (1984) Vol. 17 No. 1 (1984) Vol. 16 No. 3 (1983) Vol. 16 No. 2 (1983) Vol. 16 No. 1 (1983) Vol. 15 No. 3 (1982) Vol. 15 No. 2 (1982) Vol. 15 No. 1 (1982) Vol. 14 No. 1/2 (1981) Vol. 14 No. 3 (1981) Vol. 13 No. 1/2 (1980) Vol. 13 No. 3 (1980) Vol. 12 No. 3 (1979) Vol. 12 No. 2 (1979) Vol. 12 No. 1 (1979) Vol. 11 No. 3 (1978) Vol. 11 No. 2 (1977) Vol. 11 No. 1 (1976) Vol. 10 No. 3 (1976) Vol. 10 No. 2 (1975) Vol. 10 No. 1 (1975) Vol. 9 No. 3 (1975) Vol. 9 No. 2 (1975) Vol. 9 No. 1 (1974) Vol. 8 No. 3 (1974) Vol. 8 No. 2 (1974) Vol. 8 No. 1 (1974) Vol. 7 No. 4 (1974) Vol. 7 No. 3 (1973) Vol. 7 No. 2 (1973) Vol. 7 No. 1 (1973) Vol. 6 No. 4 (1972) Vol. 6 No. 3 (1972) Vol. 6 No. 2 (1971) Vol. 6 No. 1 (1971) Vol. 5 No. 1 (1970) Vol. 4 No. 4 (1970) Vol. 4 No. 3 (1969) Vol. 4 No. 2 (1968) Vol. 4 No. 1 (1967) Vol. 3 No. 4 (1965) Vol. 3 No. 3 (1965) Vol. 3 No. 2 (1964) Vol. 3 No. 1 (1964) Vol. 2 No. 4 (1963) Vol. 2 No. 3 (1963) Vol. 2 No. 2 (1962) Vol. 2 No. 1 (1962) Vol. 1 No. 4 (1961) Vol. 1 No. 3 (1961) Vol. 1 No. 2 (1961) Vol. 1 No. 1 (1961) More Issue