Journal of Engineering and Technological Sciences
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
Starting from Vol. 35, No. 1, 2003, full articles published are available online at http://journal.itb.ac.id, and indexed by Scopus, Index Copernicus, Google Scholar, DOAJ, GetCITED, NewJour, Open J-Gate, The Elektronische Zeitschriftenbibliothek EZB by University Library of Regensburg, EBSCO Open Science Directory, Ei Compendex, Chemical Abstract Service (CAS) and Zurich Open Repository and Archive Journal Database.
Publication History
Formerly known as:
ITB Journal of Engineering Science (2007 – 2012)
Proceedings ITB on Engineering Science (2003 - 2007)
Proceedings ITB (1961 - 2002)
Articles
10 Documents
Search results for
, issue
"Vol. 50 No. 1 (2018)"
:
10 Documents
clear
Healthcare Data Mining: Predicting Hospital Length of Stay of Dengue Patients
Iwan Inrawan Wiratmadja;
Siti Yaumi Salamah;
Rajesri Govindaraju
Journal of Engineering and Technological Sciences Vol. 50 No. 1 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2018.50.1.8
Dengue is regarded as the most important mosquito-borne viral disease. Recently dengue has emerged as a public health burden in Southeast Asia and other tropical countries. At times when dengue re-emerges as an epidemic, hospitals are required to be able to handle patient flow fluctuation while maintaining their performance. This research applied a data mining technique to build a model that can predict in-patient hospital length of stay from the time of admission, which can be useful for effective decision-making that may lead to better clinical and resource management in hospitals. Using the C4.5 algorithm and a decision tree classifier, an accuracy of 71.57% and an area under the receiver operating characteristic (ROC) curve value of 0.761 were obtained. The decision tree showed that only 7 out of 21 input attributes affect the hospital length of stay prediction of dengue patients. The attribute with the highest impact was monocytes, followed by diastolic blood pressure, hematocrit, leucocytes, systolic blood pressure, comorbidity score, and lymphocytes. In this research also a prototype of a prediction system using the resulting model was developed.
Axial and Lateral Small Strain Measurement of Soils in Compression Test using Local Deformation Transducer
Hasbullah Nawir;
Dayu Apoji;
Riska Ekawita;
Khairurrijal Khairurrijal
Journal of Engineering and Technological Sciences Vol. 50 No. 1 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2018.50.1.4
This paper presents the development of a method using local deformation transducers (LDTs) to locally and sensitively measure small axial and lateral strains in soil in a compression test. A local strain measurement system comprising of axial and lateral LDTs was developed referring to the original LDT system and the cantilever LDT system, respectively. The LDTs were calibrated both in air and under water. Their insensitivity to pressurized water was confirmed. The calibration factors for the axial and lateral LDTs were found to be 1.695 mm/volt and 1.001 mm/volt, respectively. The performance in terms of repeatability and stability of the LDT system was evaluated. The repeatability test showed that the average standard deviation of the lateral LDT was 0.015 volt, while the stability test showed that the average standard error of the axial and lateral LDT were 3.13 × 10-5 volt and 2.65 × 10-5 volt, respectively. Unconfined compression tests were conducted on three reconstituted clay samples to examine the proposed axial and lateral LDT system. The stress-strain relationship indicates a nonlinear relationship between the axial and lateral strain of soil instead of the conventionally assumed constant relationship. The results demonstrate this nonlinear behavior even at small strain levels, which were successfully measured using a domestically built axial and lateral LDT system.
Comparative Evaluation of Medical Thermal Image Enhancement Techniques for Breast Cancer Detection
Asnida Abdul Wahab;
Maheza Irna Mohamad Salim;
Jasmy Yunus;
Muhammad Hanif Ramlee
Journal of Engineering and Technological Sciences Vol. 50 No. 1 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2018.50.1.3
Thermography is a potential medical imaging modality due to its capability in providing additional physiological information. Medical thermal images obtained from infrared thermography systems incorporate valuable temperature properties and profiles, which could indicate underlying abnormalities. The quality of thermal images is often degraded due to noise, which affects the measurement processes in medical imaging. Contrast stretching and image filtering techniques are normally adopted in medical image enhancement processes. In this study, a comparative evaluation of contrast stretching and image filtering on individual channels of true color thermal images was conducted. Their individual performances were quantitatively measured using mean square error (MSE) and peak signal to noise ratio (PSNR). The results obtained showed that contrast stretching altered the temperature profile of the original image while image filtering appeared to enhance the original image with no changes in its profile. Further measurement of both MSE and PSNR showed that the Wiener filtering method outperformed other filters with an average MSE value of 0.0045 and PSNR value of 78.739 dB. Various segmentation methods applied to both filtered and contrast stretched images proved that the filtering method is preferable for in-depth analysis.
Novel Design of a Vertical Axis Hydrokinetic Turbine âStraight-Blade Cascaded (VAHTâSBC): Experimental and Numerical Simulation
Ridho Hantoro;
Erna Septyaningrum
Journal of Engineering and Technological Sciences Vol. 50 No. 1 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2018.50.1.5
A promising technology to reduce dependency on fossil fuels is hydrokinetic energy conversion using either turbine and non-turbine technology. Hydrokinetic turbine technology is penalized by low efficiency and lack of self-starting. This study involved experimental testing and numerical simulation of a novel hydrokinetic turbine design, called a Vertical Axis Hydrokinetic Turbine â Straight-Blade Cascaded (VAHTâSBC). Three configurations of the design were tested. Model 1 had 3 passive-pitch blades, while Model 2 and Model 3 had 6 and 9 blades respectively, where the outer blades were passive-pitch and the others fixed-blade. Both in the experimental test and in the numerical simulation Model 3 outperformed the other two models. The Cp of Model 3 was 0.42, which is very close to the theoretical Cp for VAHTs (0.45). It worked properly at low TSR. A CFD simulation based on the RANS solver was performed to gain supplementary information for performance investigation. This simulation confirmed that the torque changes because of the change in angle of attack as the turbine rotates. Because they have different numbers of blades, each model has different periodical torque fluctuation patterns. This study verified that utilization of cascaded blades and a passive-pitch mechanism is able to improve turbine performance.
Environmental Economic Hydrothermal System Dispatch by Using a Novel Differential Evolution
Kien Chi Le;
Bach Hoang Dinh;
Thang Nguyen
Journal of Engineering and Technological Sciences Vol. 50 No. 1 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2018.50.1.1
This paper proposes the Novel Differential Evolution (NDE) method for solving the environmental economic hydrothermal system dispatch (EEHTSD) problem with the aim to reduce electricity generation fuel costs and emissions of thermal units. The EEHTSD problem is constrained by limitations on generations, active power balance, and amount of available water. NDE applies two modified techniques. The first one is modified mutation, which is used to balance global and local search. The second one is modified selection, which is used to keep the best solutions. When performing this modified selection, the proposed method completely reduces the impact of crossover by setting it to one. Moreover, the task of tuning this factor can be canceled. Original Differential Evolution (ODE), ODE with the first modification (MMDE), and ODE with the second modification (MSDE), and NDE were tested on two different hydrothermal systems for comparison and evaluation purposes. The performance of NDE was also compared to existing methods. It was indicated that the proposed NDE is a very promising method for solving the EEHTSD problem.
Drilling Strategy for Thick Carbon Fiber Reinforced Polymer Composites (CFRP): A Preliminary Assessment
Sharizal Ahmad Sobri;
Robert Heinemann;
David Whitehead;
Norshah Afizi Shuaib
Journal of Engineering and Technological Sciences Vol. 50 No. 1 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2018.50.1.2
Carbon fiber reinforced polymer or CFRP composites are the epitome of high-performance materials in lightweight design. However, their machinability can be problematic due to non-homogenous and anisotropic material properties. This preliminary assessment emphasizes drilling strategy by using mechanical drilling and laser machining on 25.4 mm thick CFRP, which has not been investigated so far. In mechanical drilling, three drilling strategies were applied with the same parameters in order to assess the feasibility of drilling thick CFRP. The laser machining experiments were conducted to identify the potential of fiber laser machines to cut thick CFRP due to their superior laser beam quality. The results showed that choosing the appropriate drilling strategy in mechanical drilling is essential for reducing damage when drilling thick CFRP. Significant damage occurred in all experiments. The results are useful to define the relationships between machining parameters related to mechanical/laser drilling and hole/cut quality.
A Note on the Use of the Second Vertical Derivative (SVD) of Gravity Data with Reference to Indonesian Cases
Prihadi Sumintadireja;
Darharta Dahrin;
Hendra Grandis
Journal of Engineering and Technological Sciences Vol. 50 No. 1 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2018.50.1.9
Gravity data analysis and interpretation are based, among others, on their spatial variation represented by horizontal and vertical gradients. The gradient or derivative of a gravity field can be calculated either in the spatial domain or the wave-number domain. Historically, the second vertical derivative (SVD) of gravity data can be used to delineate the boundaries of anomalous sources. This paper addresses inappropriate use of the SVD of gravity data, with reference to current practices in Indonesia. The SVD's relative magnitude along a profile is widely used to define whether a density contrast and its dipping orientation correspond to a normal or reverse fault, which may be geologically incorrect. Furthermore, the SVD is calculated by approximation using the horizontal derivative, which may be erroneous especially with poorly distributed data and anomalous 3D sources. We exemplify our analysis with synthetic data and propose a more appropriate spectral-based analysis using field data.
Synthesis of Structured Triglycerides Based on Canarium Oil for Food Application
Johnner Sitompul;
Tutus Gusdinar;
Kusnandar Anggadiredja;
Hamidah Rahman;
Tursino Tursino
Journal of Engineering and Technological Sciences Vol. 50 No. 1 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2018.50.1.6
This paper concerns the synthesis of structured triglycerides containing different proportions and positions from medium- (M) and long-chain (L) fatty acids on a glycerol backbone. Structured triglycerides of MLM type were synthesized by utilizing canarium oil and incorporating caprylic acid (C8:0) as a source for the medium chain (M) fatty acids. Synthesis was performed through a two-step enzymatic reaction, with ethanolysis as the first step and esterification as the second step. Both reactions use the sn-1,3 specific lipase as a catalyst, which has specific activity at positions sn-1 and sn-3 of the triglyceride structure. The results from high-performance liquid chromatography showed that the stereospecific distribution of fatty acids in the structured triglyceride was 29.52±0.59 and 44.28±0.88 mol% of caprylic acid in the positions of sn-1,2,3 and sn-1,3, respectively. Furthermore, analysis of the physicochemical properties of both the native canarium oil and the structured triglycerides using an independent-sample t-test at p < 0.05 indicated that the two samples were significantly different for saponification number, iodium number, and average molecular weight. The results of this study showed that canarium oil can be exploited as a starting material for functional food application.
Isolation and Screening of Diesel Degrading Bacteria from Ship Dismantling Facility at Tanjungjati, Madura, Indonesia
Harmin Sulistiyaning Titah;
Herman Pratikno;
Atiek Moesriati;
Muhammad Fauzul Imron;
Rizky Islami Putera
Journal of Engineering and Technological Sciences Vol. 50 No. 1 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.5614/j.eng.technol.sci.2018.50.1.7
The ship dismantling industry is a cause of contamination of the environment by diesel. The objectives of this study were to isolate and screen diesel degrading bacteria from diesel contaminated areas. Diesel contaminated seawater and soil samples were collected from a ship dismantling facility at Tanjungjati, Madura, Indonesia. Isolation was conducted with an aseptic technique and growing the mixture culture was carried out based on the pour plate method. After 24 h of incubation, thirteen bacteria strains were isolated from diesel contaminated seawater and soil samples from the area of study. The isolated bacteria were identified based on morphological characterization. Mostly gram positive bacteria were found. The isolated bacteria were screened by using nutrient agar medium containing various diesel concentrations (0%, 5%, 10%, and 15% (v/v)). The result of the screening test showed that the bacteria coded EL and CT displayed the best resistance and highest growth in diesel polluted medium. It was shown that both of them potentially have a higher capability of utilizing diesel as carbon and energy source than the others.
Cover JETS Vol. 50 No. 1, 2018
Journal of Engineering and Technological Sciences
Journal of Engineering and Technological Sciences Vol. 50 No. 1 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar