cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota bandung,
Jawa barat
INDONESIA
Journal of Engineering and Technological Sciences
ISSN : 23375779     EISSN : 23385502     DOI : -
Core Subject : Engineering,
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere. Starting from Vol. 35, No. 1, 2003, full articles published are available online at http://journal.itb.ac.id, and indexed by Scopus, Index Copernicus, Google Scholar, DOAJ, GetCITED, NewJour, Open J-Gate, The Elektronische Zeitschriftenbibliothek EZB by University Library of Regensburg, EBSCO Open Science Directory, Ei Compendex, Chemical Abstract Service (CAS) and Zurich Open Repository and Archive Journal Database. Publication History Formerly known as: ITB Journal of Engineering Science (2007 – 2012) Proceedings ITB on Engineering Science (2003 - 2007) Proceedings ITB (1961 - 2002)
Arjuna Subject : -
Articles 14 Documents
Search results for , issue "Vol. 53 No. 3 (2021)" : 14 Documents clear
Hydrogenated Palm Fatty Acid Distillate as Raw Materials for Magnesium Stearate Alternatives Dianika Lestari; Abdu Ravi Zakaria; Dwi Rokhmat Setiawan; Shelly Shelly; Melia Laniwati; Ardiyan Harimawan; Muhamad Insanu; Diky Mudhakir
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.3

Abstract

Palm fatty acid distillate (PFAD) was used as raw material to produce solid lubricant, or anti-adherent, for confectionery or pharmaceutical products. To improve the degree of saturation, the PFAD was hydrogenated by using two methods: gaseous hydrogenation (GH) and catalytic transfer hydrogenation (CTH) using ammonium formate to produce hydrogenated PFAD (HPFAD). The HPFAD was saponified with MgO to produce magnesium salts of hydrogenated PFAD (Mg-HPFAD). The objective of this research was to investigate the effect of hydrogen concentration and reaction temperature on the iodine value of HPFAD and to investigate the characteristics of paracetamol tablets when using Mg-HPFAD as lubricant compared to commercial Mg-stearate. The HPFAD produced by CTH had a lower iodine value than the HPFAD produced by GH. The lowest iodine value was obtained after CTH using 3.6 M ammonium formate at 90°C. Paracetamol tablets with Mg-PFAD or Mg-HPFAD lubricant showed higher dissolution of active compounds with similar friability, frictiability, and hardness compared to paracetamol tablets with Mg-stearate.
Preparation of Graphene Oxide from Expanded Graphite at Different Microwave Heating Times Ahmed A Moosa; Zainab H. Mahdi; Mohammed A. Mutar
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.5

Abstract

Exfoliated graphite (EG)  was prepared by mixing graphite with HNO3 and KMnO4 at weight ratio 1:2:1 using microwave heating at times 20, 60, 80 and 120 sec. Graphene  oxide (GO) was then prepared using EG as precursor by the modified Hummer’s method. Atomic force microscopy (AFM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy analyses  showed successful conversion of EG into GO. The XRD results of the GO showed that the maximum interplanar distance (d-spacing) increased from 0.344 to 0.831 nm. The AFM showed a minimum thickness of  0.519 nm for a single layer of GO prepared from EG 80 sec. The XRD examination also showed an increase in the d-spacing between the GO layers after sonication compared to before sonication.
Optimization and Modeling of Ammonia Removal from Aqueous Solutions by Using Adsorption on Single-walled Carbon Nanotubes Ghasem Hassani; Arsalan Jamshidi; Soheila Rezaei; Roohullah Jahanpour; Hossein Mari Oryad
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.9

Abstract

Due to the health effects of ammonia as an environmental pollutant, such as its odor, corrosion, algae phenomenon, etc., a method should be adopted to remove it from wastewater. In this study, removal of ammonia from hypothetical wastewater was investigated using adsorption on SWCNTs. The Design-Expert software was used to design the experiments and optimize the parameters that are effective in the adsorption performance of carbon nanotubes (CNTs), such as contact time, adsorbent dosage, pH, temperature, and ammonia concentration. The results revealed that the maximum adsorption with a performance of 90% was attained at a pH of 9.5. In addition, the adsorption performance was enhanced by increasing adsorption time and adsorbent dosage. Furthermore, increasing the temperature and the adsorbate quantity led to a decrease in the adsorption performance.
Numerical Simulation of Damage in Sandwich Composite Panels Due to Hydrodynamic Impact Satrio Wicaksono; Nur Ridhwan Muharram; Hermawan Judawisastra; Tatacipta Dirgantara
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.4

Abstract

The float and hull are vital parts of amphibious planes and boats, respectively, as both have to absorb hydrodynamic impact due to interaction with water. Sandwich composite panels are commonly used for such applications and other impact-absorbing structures. Unfortunately, the failure mechanism of sandwich composite panels under hydrodynamic impact is very complicated, as it may consist of composite skin failure, core failure, and non-uniform delamination. Hence, a numerical study on the damage of sandwich composite panels under hydrodynamic load is necessary. In this study, numerical simulation implementing the Coupled Eulerian-Lagrangian (CEL) method was performed to observe the damage mechanism of sandwich composite panels. The CEL method combines the Lagrangian and Eulerian frames into one model. Thus, analysis of structure deformation and fluid motion can be performed simultaneously. The result of the current numerical simulation shows a fair agreement with the experimental results in the literature, which shows that the current methodology can represent the sandwich composite panel response in real-life conditions, especially before shear core failure initiates.
The Effect of Temperature on the Electrical Characteristics of Nanofluids Based on Palm Oil Pichai Muangpratoom
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.12

Abstract

This study sought to apply nanotechnology to develop the electrical characteristics of palm oil. Experiments were conducted using three types of nanoparticles: zinc oxide (ZnO), titanium dioxide (TiO2), and barium titanate (BaTiO3). The nanofluid samples were prepared by mixing the nanoparticles with palm oil using various processes. In the first scenario, a combination of palm oil with nanoparticles at 0.01 vol% was created, while the next sample had 0.03 vol% of nanoparticles. The samples were then fully dispersed using a magnetic stirrer, followed by ultrasonic dispersal in order to ensure homogeneity of the nanofluid. The electrodes were set 2.5 mm apart and the test was performed six times on each test sample in compliance with the IEC 60156 standard. The voltage breakdown characteristics were recorded for each of the liquids at temperatures varying from 35 °C to 90 °C. The results showed that for the palm oil samples containing nanoparticles, the voltage breakdown was greater than for the samples containing unmodified palm oil.
Seismic Behavior of Concrete-Filled Steel Tube (CFST) Column and Reinforced Concrete (RC) Beam Connections under Reversed Cyclic Loading Ahmed Najm Abdullah; Bambang Budiono; Herlien Dwiarti Setio; Erwin Lim
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.1

Abstract

Previous studies on the connection between concrete-filled steel tube (CFST) columns and reinforced concrete (RC) beams have shown a loss of joint confinement because the steel tube was completely or partially cut in the joint area. This research presents a new connection system that provides joint confinement through a continuous steel tube. Potential sliding shear at the smooth interface between the columns and beams in the joint face is mitigated using two mechanisms: (i) shear connectors and (ii) longitudinal web beam reinforcement. This study tested two CFST column and RC beam joints to 4.5% drift ratio under combined compression axial load and lateral cyclic load. The experimental results revealed no cracks at the joint zone and the specimens satisfied the ACI 374.1-05 criteria, despite minor sliding at the beam-column interface. The finite element (FE) model showed good agreement with the experimental results.
Data Driven Building Electricity Consumption Model Using Support Vector Regression FX Nugroho Soelami; Putu Handre Kertha Utama; Irsyad Nashirul Haq; Justin Pradipta; Edi Leksono; Meditya Wasesa
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.13

Abstract

Every building has certain electricity consumption patterns that depend on its usage. Building electricity budget planning requires a consumption forecast to determine the baseline electricity load and to support energy management decisions. In this study, an algorithm to model building electricity consumption was developed. The algorithm is based on the support vector regression (SVR) method. Data of electricity consumption from the past five years from a selected building object in ITB campus were used. The dataset unexpectedly exhibited a large number of anomalous points. Therefore, a tolerance limit of hourly average energy consumption was defined to obtain good quality training data. Various tolerance limits were investigated, that is 15% (Type 1), 30% (Type 2), and 0% (Type 0). The optimal model was selected based on the criteria of mean absolute percentage error (MAPE) < 20% and root mean square error (RMSE) < 10 kWh. Type 1 data was selected based on its performance compared to the other two. In a real implementation, the model yielded a MAPE value of 14.79% and an RMSE value of 7.48 kWh when predicting weekly electricity consumption. Therefore, the Type 1 data-based model could satisfactorily forecast building electricity consumption.
The Method of Lines Analysis of TE Mode Propagation in Silica based Optical Directional Couplers Ary - Syahriar; Putri Wulandari; Ahmad Husin Lubis; Retno Wigajatri; Danny M. Gandana; Anwar Mujadin
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.2

Abstract

Optical directional couplers fabricated using planar light wave circuit (PLC) technology are versatile tools in integrated photonics devices. They have the advantages of small size, high consistency, ability for high volume production, and excellent possibility to be integrated with electronics circuits. Optical waveguide couplers are mainly utilized as power dividers, optical switches, and wavelength division multiplexers/de-multiplexers (WDM). A number of methods have been used to analyze directional couplers, such as coupled mode theory (CMT), the beam propagation method (BPM), the method of lines (MoL), finite-difference methods (FDM), and finite element methods (FEM). Among these numerical approaches, MoL is the simplest method to analyze mode propagation inside directional couplers because it has the advantages of very fast convergence and accurate solutions for one-dimensional structures. The objective of this study was to analyze the propagation of TE modes in optical directional couplers by using MoL. The parameters used, i.e. waveguide width, refractive index, and wavelength, were taken from the characteristics of silica-on-silicon directional couplers that were used in fabrication. MoL is considered a special finite-difference method, which discretizes a one- or two-dimensional wave equation in the transverse direction and uses an analytical solution for the propagation directions. Basically, MoL is a semi analytical numerical method with the advantages of numerical stability, computational efficiency, and calculation time reduction. Further, we explored the possibility of using directional couplers as optical switching devices.
The Effect of Thermal Ageing on the Mechanical Properties of Natural Rubber-based Compounds Used for Rubber Bearings Manuel Alberto Guzmán; Diego Hernán Giraldo-Vásquez; Ricardo Moreno
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.10

Abstract

Molecular changes due to high temperatures, sunlight, and oxygen, deteriorate the physical properties of rubber compounds, yielding additional crosslinks and molecular chain breakdown. Since oxidative degradation is the most important factor that determines the durability of rubber components, this study evaluated the mechanical behavior of rubber compounds exposed to accelerated thermal ageing. Therefore, three carbon black-reinforced natural rubber-based compounds typically used for rubber bearings were exposed to thermal oxidation and their mechanical properties under typical loading states were assessed through standardized tests. Significant differences were found due to thermal ageing in the compressive modulus, compression set, and creep compliance in compression, exhibiting a stiffening effect caused by additional crosslinks. However, no significant differences were observed in hardness, which is a superficial measurement and a typical test in the rubber industry to characterize rubber compounds. Therefore, the assessment of ageing in rubber bearings should not be limited to a hardness test, which is required in design standards but also addresses compressive, cyclic, and transient tests. The results obtained in this study can be considered in the design process of rubber bearings by limiting the allowable compressive stress and creep deflection due to ageing effects.
Airflow Characteristics Investigation of a Diesel Engine for Different Helical Port Openings and Engine Speeds Willyanto Anggono; Mitsuhisa Ichiyanagi; Reina Saito; Gabriel J. Gotama; Chris Cornelius; Ryera Kreshna; Takashi Suzuki
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.6

Abstract

Intake airflow characteristics are essential for the performance of diesel engines. However, previous investigations of these airflow characteristics were mostly performed on two-valve engines despite the difference between the airflow of two-valve and four-valve engines. Therefore, in this study, particle image velocimetry (PIV) investigations were performed on a four-valve diesel engine. The investigations were conducted under different engine speeds and helical port openings using a swirl control valve (SCV). The results suggest that the position of the swirl center does not significantly shift with different engine speeds and helical port openings, as the dynamics of the flow remained closely similar. The trends of the airflow characteristics can be best observed during the compression stroke. A higher engine speed increases the angular velocity of the engine more compared to the increase of the airflow velocity and results in a lower swirl ratio of the flow. On the other hand, a higher engine speed leads to a higher mean velocity and the variation of velocity results in a larger turbulence intensity of the flow. Increasing the helical port opening brings a reduction in the swirl ratio and turbulence intensity as more airflow from the helical port disturbs the airflow from the tangential port.

Page 1 of 2 | Total Record : 14


Filter by Year

2021 2021


Filter By Issues
All Issue Vol. 55 No. 6 (2023) Vol. 55 No. 5 (2023) Vol. 55 No. 4 (2023) Vol. 55 No. 3 (2023) Vol. 55 No. 2 (2023) Vol. 55 No. 1 (2023) Vol. 54 No. 6 (2022) Vol. 54 No. 5 (2022) Vol. 54 No. 4 (2022) Vol. 54 No. 3 (2022) Vol. 54 No. 2 (2022) Vol. 54 No. 1 (2022) Vol. 53 No. 6 (2021) Vol. 53 No. 5 (2021) Vol. 53 No. 4 (2021) Vol. 53 No. 3 (2021) Vol. 53 No. 2 (2021) Vol. 53 No. 1 (2021) Vol. 52 No. 6 (2020) Vol. 52 No. 5 (2020) Vol. 52 No. 4 (2020) Vol. 52 No. 3 (2020) Vol 52, No 3 (2020) Vol 52, No 2 (2020) Vol. 52 No. 2 (2020) Vol 52, No 1 (2020) Vol. 52 No. 1 (2020) Vol 51, No 6 (2019) Vol. 51 No. 6 (2019) Vol 51, No 5 (2019) Vol. 51 No. 5 (2019) Vol. 51 No. 4 (2019) Vol 51, No 4 (2019) Vol 51, No 3 (2019) Vol. 51 No. 3 (2019) Vol. 51 No. 2 (2019) Vol 51, No 2 (2019) Vol 51, No 2 (2019) Vol 51, No 1 (2019) Vol. 51 No. 1 (2019) Vol 51, No 1 (2019) Vol. 50 No. 6 (2018) Vol 50, No 6 (2018) Vol 50, No 6 (2018) Vol. 50 No. 5 (2018) Vol 50, No 5 (2018) Vol 50, No 5 (2018) Vol 50, No 4 (2018) Vol 50, No 4 (2018) Vol. 50 No. 4 (2018) Vol 50, No 3 (2018) Vol 50, No 3 (2018) Vol. 50 No. 3 (2018) Vol. 50 No. 2 (2018) Vol 50, No 2 (2018) Vol 50, No 2 (2018) Vol. 50 No. 1 (2018) Vol 50, No 1 (2018) Vol 49, No 6 (2017) Vol. 49 No. 6 (2017) Vol 49, No 6 (2017) Vol 49, No 5 (2017) Vol 49, No 5 (2017) Vol. 49 No. 5 (2017) Vol 49, No 4 (2017) Vol 49, No 4 (2017) Vol. 49 No. 4 (2017) Vol. 49 No. 3 (2017) Vol 49, No 3 (2017) Vol 49, No 3 (2017) Vol. 49 No. 2 (2017) Vol 49, No 2 (2017) Vol 49, No 2 (2017) Vol 49, No 1 (2017) Vol. 49 No. 1 (2017) Vol. 48 No. 6 (2016) Vol 48, No 6 (2016) Vol 48, No 6 (2016) Vol. 48 No. 5 (2016) Vol 48, No 5 (2016) Vol 48, No 5 (2016) Vol. 48 No. 4 (2016) Vol 48, No 4 (2016) Vol 48, No 3 (2016) Vol. 48 No. 3 (2016) Vol. 48 No. 2 (2016) Vol 48, No 2 (2016) Vol. 48 No. 1 (2016) Vol 48, No 1 (2016) Vol. 47 No. 6 (2015) Vol 47, No 6 (2015) Vol. 47 No. 5 (2015) Vol 47, No 5 (2015) Vol. 47 No. 4 (2015) Vol 47, No 4 (2015) Vol. 47 No. 3 (2015) Vol 47, No 3 (2015) Vol 47, No 2 (2015) Vol. 47 No. 2 (2015) Vol. 47 No. 1 (2015) Vol 47, No 1 (2015) Vol. 46 No. 4 (2014) Vol 46, No 4 (2014) Vol 46, No 3 (2014) Vol. 46 No. 3 (2014) Vol. 46 No. 2 (2014) Vol 46, No 2 (2014) Vol 46, No 1 (2014) Vol. 46 No. 1 (2014) Vol. 45 No. 3 (2013) Vol 45, No 3 (2013) Vol. 45 No. 2 (2013) Vol 45, No 2 (2013) Vol 45, No 1 (2013) Vol. 45 No. 1 (2013) Vol. 44 No. 3 (2012) Vol 44, No 3 (2012) Vol. 44 No. 2 (2012) Vol 44, No 2 (2012) Vol 44, No 1 (2012) Vol. 44 No. 1 (2012) Vol 43, No 3 (2011) Vol. 43 No. 3 (2011) Vol. 43 No. 2 (2011) Vol 43, No 2 (2011) Vol 43, No 1 (2011) Vol. 43 No. 1 (2011) Vol. 42 No. 2 (2010) Vol 42, No 2 (2010) Vol. 42 No. 1 (2010) Vol 42, No 1 (2010) Vol. 41 No. 2 (2009) Vol 41, No 2 (2009) Vol. 41 No. 1 (2009) Vol 41, No 1 (2009) Vol 40, No 2 (2008) Vol. 40 No. 2 (2008) Vol 40, No 1 (2008) Vol. 40 No. 1 (2008) Vol 39, No 2 (2007) Vol. 39 No. 2 (2007) Vol. 39 No. 1 (2007) Vol 39, No 1 (2007) Vol 38, No 2 (2006) Vol. 38 No. 2 (2006) Vol. 38 No. 1 (2006) Vol 38, No 1 (2006) Vol 37, No 2 (2005) Vol. 37 No. 2 (2005) Vol 37, No 1 (2005) Vol. 37 No. 1 (2005) Vol 36, No 2 (2004) Vol. 36 No. 2 (2004) Vol. 36 No. 1 (2004) Vol 36, No 1 (2004) Vol. 35 No. 2 (2003) Vol 35, No 2 (2003) Vol. 35 No. 1 (2003) Vol 35, No 1 (2003) More Issue