cover
Contact Name
Yuliah Qotimah
Contact Email
yuliah@lppm.itb.ac.id
Phone
+622286010080
Journal Mail Official
jictra@lppm.itb.ac.id
Editorial Address
LPPM - ITB Center for Research and Community Services (CRCS) Building Floor 6th Jl. Ganesha No. 10 Bandung 40132, Indonesia Telp. +62-22-86010080 Fax. +62-22-86010051
Location
Kota bandung,
Jawa barat
INDONESIA
Journal of ICT Research and Applications
ISSN : 23375787     EISSN : 23385499     DOI : https://doi.org/10.5614/itbj.ict.res.appl.
Core Subject : Science,
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management.
Articles 7 Documents
Search results for , issue "Vol. 13 No. 2 (2019)" : 7 Documents clear
Using Graph Pattern Association Rules on Yago Knowledge Base Wahyudi Wahyudi; Masayu Leylia Khodra; Ary Setijadi Prihatmanto; Carmadi Machbub
Journal of ICT Research and Applications Vol. 13 No. 2 (2019)
Publisher : LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.ict.res.appl.2019.13.2.6

Abstract

The use of graph pattern association rules (GPARs) on the Yago knowledge base is proposed. Extending association rules for itemsets, GPARS can help to discover regularities between entities in a knowledge base. A rule-generated graph pattern (RGGP) algorithm was used for extracting rules from the Yago knowledge base and a GPAR algorithm for creating the association rules. Our research resulted in 1114 association rules, with the value of standard confidence at 50.18% better than partial completeness assumption (PCA) confidence at 49.82%. Besides that the computation time for standard confidence was also better than for PCA confidence.
Using Customer Emotional Experience from E-Commerce for Generating Natural Language Evaluation and Advice Reports on Game Products Hamdan Gani; Kiyoshi Tomimatsu
Journal of ICT Research and Applications Vol. 13 No. 2 (2019)
Publisher : LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.ict.res.appl.2019.13.2.5

Abstract

Investigating customer emotional experience using natural language processing (NLP) is an example of a way to obtain product insight. However, it relies on interpreting and representing the results understandably. Currently, the results of NLP are presented in numerical or graphical form, and human experts still need to provide an explanation in natural language. It is desirable to develop a computational system that can automatically transform NLP results into a descriptive report in natural language. The goal of this study was to develop a computational linguistic description method to generate evaluation and advice reports on game products. This study used NLP to extract emotional experiences (emotions and sentiments) from e-commerce customer reviews in the form of numerical information. This paper also presents a linguistic description method to generate evaluation and advice reports, adopting the Granular Linguistic Model of a Phenomenon (GLMP) method for analyzing the results of the NLP method. The test result showed that the proposed method could successfully generate evaluation and advice reports assessing the quality of 5 game products based on the emotional experience of customers.
Identifying Fake Facebook Profiles Using Data Mining Techniques Mohammed Basil Albayati; Ahmad Mousa Altamimi
Journal of ICT Research and Applications Vol. 13 No. 2 (2019)
Publisher : LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.ict.res.appl.2019.13.2.2

Abstract

Facebook, the popular online social network, has changed our lives. Users can create a customized profile to share information about themselves with others that have agreed to be their 'friend'. However, this gigantic social network can be misused for carrying out malicious activities. Facebook faces the problem of fake accounts that enable scammers to violate users' privacy by creating fake profiles to infiltrate personal social networks. Many techniques have been proposed to address this issue. Most of them are based on detecting fake profiles/accounts, considering the characteristics of the user profile. However, the limited profile data made publicly available by Facebook makes it ineligible for applying the existing approaches in fake profile identification. Therefore, this research utilized data mining techniques to detect fake profiles. A set of supervised (ID3 decision tree, k-NN, and SVM) and unsupervised (k-Means and k-medoids) algorithms were applied to 12 behavioral and non-behavioral discriminative profile attributes from a dataset of 982 profiles. The results showed that ID3 had the highest accuracy in the detection process while k-medoids had the lowest accuracy.
Big Data Assisted CRAN Enabled 5G SON Architecture Kiran Khurshid; Adnan Ahmed Khan; Haroon Siddiqui; Imran Rashid; M. Usman Hadi
Journal of ICT Research and Applications Vol. 13 No. 2 (2019)
Publisher : LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.ict.res.appl.2019.13.2.1

Abstract

The recent development of Big Data, Internet of Things (IoT) and 5G network technology offers a plethora of opportunities to the IT industry and mobile network operators. 5G cellular technology promises to offer connectivity to massive numbers of IoT devices while meeting low-latency data transmission requirements. A deficiency of the current 4G networks is that the data from IoT devices and mobile nodes are merely passed on to the cloud and the communication infrastructure does not play a part in data analysis. Instead of only passing data on to the cloud, the system could also contribute to data analysis and decision-making. In this work, a Big Data driven self-optimized 5G network design is proposed using the knowledge of emerging technologies CRAN, NVF and SDN. Also, some technical impediments in 5G network optimization are discussed. A case study is presented to demonstrate the assistance of Big Data in solving the resource allocation problem.
Identification of Image Edge Using Quantum Canny Edge Detection Algorithm Dini Sundani; Sigit Widiyanto; Yuli Karyanti; Dini Tri Wardani
Journal of ICT Research and Applications Vol. 13 No. 2 (2019)
Publisher : LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.ict.res.appl.2019.13.2.4

Abstract

Identification of image edges using edge detection is done to obtain images that are sharp and clear. The selection of the edge detection algorithm will affect the result. Canny operators have an advantage compared to other edge detection operators because of their ability to detect not only strong edges but also weak edges. Until now, Canny edge detection has been done using classical computing where data are expressed in bits, 0 or 1. This paper proposes the identification of image edges using a quantum Canny edge detection algorithm, where data are expressed in the form of quantum bits (qubits). Besides 0 or 1, a value can also be 0 and 1 simultaneously so there will be many more possible values that can be obtained. There are three stages in the proposed method, namely the input image stage, the preprocessing stage, and the quantum edge detection stage. Visually, the results show that quantum Canny edge detection can detect more edges compared to classic Canny edge detection, with an average increase of 4.05%.
Tunnel Settlement Prediction by Transfer Learning Qicai Zhou; Hehong Shen; Jiong Zhao; Xiaolei Xiong
Journal of ICT Research and Applications Vol. 13 No. 2 (2019)
Publisher : LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.ict.res.appl.2019.13.2.3

Abstract

Tunnel settlement has a significant impact on property security and personal safety. Accurate tunnel-settlement predictions can quickly reveal problems that may be addressed to prevent accidents. However, each acquisition point in the tunnel is only monitored once daily for around two months. This paper presents a new method for predicting tunnel settlement via transfer learning. First, a source model is constructed and trained by deep learning, then parameter transfer is used to transfer the knowledge gained from the source model to the target model, which has a small dataset. Based on this, the training complexity and training time of the target model can be reduced. The proposed method was tested to predict tunnel settlement in the tunnel of Shanghai metro line 13 at Jinshajiang Road and proven to be effective. Artificial neural network and support vector machines were also tested for comparison. The results showed that the transfer-learning method provided the most accurate tunnel-settlement prediction.
Cover JICTRA Vol. 13 No. 2, 2019 Journal of ICT Research and Applications
Journal of ICT Research and Applications Vol. 13 No. 2 (2019)
Publisher : LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Page 1 of 1 | Total Record : 7