cover
Contact Name
Hindayati Mustafidah
Contact Email
jurnal.juita@gmail.com
Phone
+6285842817313
Journal Mail Official
jurnal.juita@gmail.com
Editorial Address
Gedung Fakultas Teknik dan Sains Universitas Muhammadiyah Purwokerto Jl. K.H. Ahmad Dahlan, Dukuh Waluh, Kembaran, Banyumas, Central Java, Indonesia
Location
Kab. banyumas,
Jawa tengah
INDONESIA
JUITA : Jurnal Informatika
ISSN : 20869398     EISSN : 25798901     DOI : 10.30595/JUITA
Core Subject : Science,
UITA: Jurnal Informatika is a science journal and informatics field application that presents articles on thoughts and research of the latest developments. JUITA is a journal peer reviewed and open access. JUITA is published by the Informatics Engineering Study Program, Universitas Muhammadiyah Purwokerto. JUITA invites researchers, lecturers, and practitioners worldwide to exchange and advance knowledge in the field of Informatics. Documents submitted must be in Ms format. Word and written according to author guideline. JUITA is published twice a year in May and November. Currently, JUITA has been indexed by Google Scholar, IPI, DOAJ, and has been accredited by SINTA rank 2 through the Decree of the Director-General of Research and Development Strengthening of the Ministry of Research, Technology and Higher Education No. 36/E/KPT/2019. JUITA is intended as a media for informatics research among academics, practitioners, and society in general. JUITA covers the following topics of informatics research: Software engineering Artificial Intelligence Data Mining Computer network Multimedia Management Information System Digital forensics Game
Articles 15 Documents
Search results for , issue "JUITA Vol. 12 No. 1, May 2024" : 15 Documents clear
Enhancing Information Technology Adoption Potential in MSMEs: a Conceptual Model Based on TOE Framework Ainayah Syifa Hendri; Endah Sudarmilah
JUITA: Jurnal Informatika JUITA Vol. 12 No. 1, May 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i1.21051

Abstract

The adoption of Information Technology (IT) by Micro, Small, and Medium Enterprises (MSMEs) has become essential in the digital era. Nevertheless, challenges persist, such as enhancing IT adoption in the MSMEs sector and optimizing its benefits. This research aims to create a comprehensive model based on the Technology- Organization-Environment (TOE) framework by analyzing technological, organizational, and environmental factors influencing IT adoption among MSMEs in Pangandaran, Indonesia. Employing a quantitative approach, an online questionnaire was distributed to MSMEs, and data were analyzed using Partial Least Square-Structural Equation Modeling (PLS- SEM) through SmartPLS. The study significantly contributes to understanding IT adoption, emphasizing organizational context as the primary predictor, followed by technological and environmental contexts. Positive relationships were found between four contextual constructs: complexity, top management support, organizational readiness, and competitive pressure towards IT adoption in MSMEs. Conversely, compatibility and government support exhibited negative impacts. These findings have practical implications for Indonesian MSMEs by enhancing understanding of factors influencing IT adoption to support business operations. Furthermore, these findings hold the potential to assist MSMEs and the Indonesian government in optimizing IT adoption success. The generated data can be employed by MSMEs management authorities to devise strategies for enhancing IT adoption among MSMEs.
Improve Coal Blending Optimization in CFPP by Cromosom and Fitness Function Redefinition of the Genetic Algorithm Binti Solihah; Ahmad Zuhdi; Abdul Rochman; Edo Yulistama; Hilda Dwi Utari
JUITA: Jurnal Informatika JUITA Vol. 12 No. 1, May 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i1.18731

Abstract

Blending coal before it enters the power plant boiler unit is necessary to adjust the coal categories according to the boiler unit specifications. The power plant must also comply with the regulations regarding coal-biomass co-firing through blending. Applying a Genetic Algorithm that only considers the composition and fitness based on the blend's quality leads to accumulation issues, decreasing coal quality. This research proposes redefining chromosomes, fitness functions, mutation rules, population determination, and output as the best chromosome used in the Genetic Algorithm. Testing uses various compositions of coal inputs from the barge, coal yard, and biomass to simulate different conditions. The test results demonstrate that the developed algorithm can provide all possible alternative blends between the coal in the barge and at the coal yard. Under specific conditions, operators can choose a blend composition that involves coal stored in the coal yard for an extended period.
Implementation of Backpropagation Neural Network for Prediction Magnetocaloric Effect of Manganite Jan Setiawan; Silviana Simbolon; Yunasfi Yunasfi
JUITA: Jurnal Informatika JUITA Vol. 12 No. 1, May 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i1.20452

Abstract

In the field of magnetic cooling technology, there is still much to learn about the magnetocaloric properties of magnetic cooling materials. Research into magnetocaloric manganites exhibiting a significant maximum magnetic entropy change in the vicinity of ambient temperature yields encouraging outcomes for the advancement of magnetic refrigeration apparatus. Through a combination of chemical substitutions, changes in the amount of oxygen present, and different synthesis techniques, these manganites undergo lattice distortions that result in pseudocubic, orthorhombic, and rhombohedral structures instead of perovskite cubic structures. The present investigation used backpropagation neural networks (BPNNs) to investigate the correlations among maximum magnetic entropy change (MMEC), Curie temperature (Tc), lanthanum manganite compositions, lattice properties, and dopant ionic radii. Simbrain 3.07 was used to execute the BPNN model, and the suggested model accuracy was examined using coefficient determination. As a result, the model's predicted values for the mean absolute error, root mean square, and coefficient correlation for MMEC are 0.012, 0.022, and 0.9861, respectively. The model predicts that the Curie temperature mean absolute error, root mean square, and coefficient correlation will be 0.015, 0.021, and 0.9947, respectively. Based on these results, BPNN has the potential to be applied in predicting the MMEC and Tc of manganite as preliminary decision during experiments.
Face Gender Classification using Combination of LPQ-Self PCA Tio Dharmawan; Danu Adi Nugroho; Muhammad Arief Hidayat
JUITA: Jurnal Informatika JUITA Vol. 12 No. 1, May 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i1.21137

Abstract

The age factor had a significant impact on human faces, potentially influencing the performance of existing gender classification systems. This research proposed a new method that combined local descriptors such as Local Binary Patterns (LBP) and Local Phase Quantization (LPQ) with Self-Principal Component Analysis (Self-PCA) as a feature extraction technique. The use of Self-PCA was chosen for its ability to address the age factor in human facial images, while also leveraging local descriptors to capture features from these images. The primary focus was to compare the performance of Self-PCA with LPQ+Self-PCA, along with the additional comparison of LBP+Self-PCA, in the task of gender classification using facial images. Euclidean distance served as the classifier, and the evaluation was conducted using the FG-Net and ORL datasets. The combination of LPQ+Self-PCA showed an improvement in accuracy by 57.85% compared to the combination of LBP+Self-PCA, which provided an accuracy of 56.47%. Meanwhile, using Self-PCA alone gave an accuracy of 55.37% on the FG-Net. In contrast, on the ORL dataset, both combinations gave the same accuracy result as Self-PCA, which was 90.14%, for images without blurring.
Improving Stroke Detection with Hybrid Sampling and Cascade Generalization Widya Putri Nurmawati; Indahwati Indahwati; Farit Mochamad Afendi
JUITA: Jurnal Informatika JUITA Vol. 12 No. 1, May 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i1.19386

Abstract

The prevalence of stroke in Indonesia has increased. One survey in Indonesia that contains information about the health conditions of the Indonesian people is the Indonesian Family Life Survey (IFLS). The proportion of respondents who had a stroke and non-stroke in IFLS5 showed an imbalance with an extreme level of imbalance; hence, this research aims to overcome this problem with SMOTE, SMOTE-Tomek Link, and SMOTE-ENN; then, the balanced dataset is classified using the ensemble and cascade approaches to improve the detection of stroke risk and to identify the important variables. However, the stroke respondents were still challenging to classify after imbalance class handling, presumably because of the large amount of data before and after balancing. The solution is to balance the training data with various percentages. The results showed the best percentage is applied to 5% of the training data, balanced by the SMOTE-ENN, and the ensemble method with the cascade approach increases the sensitivity and balanced accuracy values. Random forest and logistic regression combine models that produce the best performance, with a classification tree as the final model. The important variables obtained from this combination are the addition of probability from random forest, logistic regression, history of hypertension, age, and physical activity.

Page 2 of 2 | Total Record : 15