Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Automotive Experiences

Study on the Addition of A Swirling Vane to Spark Ignition Engines Fueled by Gasoline and Gasoline-Ethanol Wawan Purwanto; Jerry Chih Tsong Su; Muhammad Latifur Rochman; Budi Waluyo; Krismadinata Krismadinata; Ahmad Arif
Automotive Experiences Vol 6 No 1 (2023)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7981

Abstract

Although the technology of fuel injection in motorcycles has reached ports and direct injection, motorcycles with carburetors are still used. In this research, the carburetor was modified by adding a swirling vane. This study is intended to provide an explanation regarding engine performance which includes torque, power, mileage, emissions, and engine oil temperature. The study begins with a review of the shape and flow characteristics of the swirling vane based on the largest flow according to previous studies. Then, a swirling vane is built and tested to ensure its optimal shape. The findings were compared with conventional carburetor-based engines that had not been treated. Experiments were also carried out on gasoline-ethanol to obtain optimal results and use them appropriately for alternative fuel applications. A comparison of data on torque, power, exhaust emissions, temperature, and mileage reveals that vehicles modified with swirling vanes have better performance. Furthermore, based on the results of gasoline-ethanol application tests, this design is only suitable for use up to E25.
Study on Solar Powered Electric Vehicle with Thermal Management Systems on the Electrical Device Performance Herlambang, Yusuf Dewantoro; Sulistiyo, Wahyu; Margana, Margana; Apriandi, Nanang; Nursaputro, Septiantar Tebe; Marliyati, Marliyati; Setiyo, Muji; Purwanto, Wawan; Rochman, Muhammad Latifur; Shyu, Jin Cherng
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10506

Abstract

This study aims to determine the reliability of applying a thermal management system in conjunction with Internet of Things in solar electric cars. In conventional electric cars or those whose driving energy source comes from gasoline fuel; the applied thermal management system is mainly used as a coolant for the internal combustion engine. However, for electric cars the thermal management system may be used for the main components such as controllers that convert solar module energy into electricity and batteries. Results from tests utilizing six DC fans for air cooling of the thermal management system yield two variations of battery charging conditions from the solar modules, namely variations of 25 and 400 turns of the trimmer constant current step-up charger. Test results from the proposed thermal management system show that the highest step-up charger temperature is 35.75 °C with voltage of 57.64 V for the variation of 25 laps. The test results on the battery voltage and temperature show that the highest battery temperature reaches 31.75 °C with voltage of 57.3 V at the variation of 25 rounds.
Exploration of Engine Parameters for Emission Reduction in Gasoline-Ethanol Fueled Engines Purwanto, Wawan; Maksum, Hasan; Arif, Ahmad; Rochman, Muhammad Latifur; Sujito, Sujito; Padrigalan, Kathleen Ebora
Automotive Experiences Vol 7 No 3 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.12467

Abstract

The main objective of this study is to develop spark ignition engine parameters that allow complete combustion while reducing dependence on fossil fuels. To achieve this goal, optimization of compression ratio, gasoline-ethanol mixture, ignition timing, and spark plug type was used. In addition, this study used water injection that continuously injects water before the intake manifold. In this study, the Taguchi method with the L9 orthogonal array was applied. According to the experimental verification results, the best combination to reduce exhaust emission levels is to utilize gasoline-ethanol (E70), a compression ratio (CR) of 15.6:1, an ignition degree of +4°, and a platinum spark plug. Meanwhile, the presence of water injection at 1.45 ml/s helps reduce vehicle exhaust pollutants.