Claim Missing Document
Check
Articles

Found 3 Documents
Search

Diseases Classification for Tea Plant Using Concatenated Convolution Neural Network Krisnandi, Dikdik; Pardede, Hilman F.; Yuwana, R. Sandra; Zilvan, Vicky; Heryana, Ana; Fauziah, Fani; Rahadi, Vitria Puspitasari
CommIT (Communication and Information Technology) Journal Vol 13, No 2 (2019): CommIT Vol. 13 No. 2 Tahun 2019
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/commit.v13i2.5886

Abstract

Plant diseases can cause a significant decrease in tea crop production. Early disease detection can help to minimize the loss. For tea plants, experts can identify the diseases by visual inspection on the leaves. However, providing experts to deal with disease identification may be very costly. The machine learning technology can be implemented to provide automatic plant disease detection. Currently, deep learning is state-of-the-art for object identification in computer vision. In this study, the researchers propose the Convolutional Neural Network (CNN) for tea disease detections. The researchers focus on the implementation of concatenated CNN, namely GoogleNet, Xception, and Inception-ResNet-v2, for this task. About 4727 images of tea leaves are collected, comprising of three types of diseases that commonly occur in Indonesia and a healthy class. The experimental results confirm the effectiveness of concatenated CNN for tea disease detections. The accuracy of 89.64% is achieved.
Automatic detection of crop diseases using gamma transformation for feature learning with a deep convolutional autoencoder Zilvan, Vicky; Ramdan, Ade; Supianto, Ahmad Afif; Heryana, Ana; Arisal, Andria; Yuliani, Asri Rizki; Krisnandi, Dikdik; Suryawati, Endang; Suryo Kusumo, Raden Budiarianto; Yuawana, Raden Sandra; Kadar, Jimmy Abdel; Pardede, Hilman F.
Jurnal Teknologi dan Sistem Komputer [IN PRESS] Volume 10, Issue 3, Year 2022 (July 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14250

Abstract

Precision agriculture is a management strategy for sustaining and increasing the production of agricultural commodities. One of its implementations is for crop disease detection. Currently, deep learning methods have become widespread methods for the automatic detection of crop diseases. Most deep learning methods showed better performance when using an original image in raw form as inputs. However, the original image of crop diseases may appear similar between one disease to another.  Therefore, the deep learning methods may misclassify the data. To deal with these, we propose the gamma transformation with a deep convolutional autoencoder to extract good features from the original image data. We use the output of the gamma transformation with a deep convolutional autoencoder as inputs to a classifier for the automatic detection of crop diseases. Our experiments show that the average accuracies of our method improve the performance of crop disease detection compared to only using raw data as inputs.
Two-Stage Object Detection for Autonomous Vehicles With VGG-16 Based Faster R-CNN Dewi, Arnetta Listiana; Pardede, Hilman F.; Suryawati, Endang; Pratiwi, Hasih; Heryana, Ana; Yuliani, Asri R; Ramdan, Ade
Jurnal Elektronika dan Telekomunikasi Vol 24, No 1 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jet.551

Abstract

The implementation of object detection for autonomous vehicles is essential as it is necessary to identify common object on the street so proper response could be designed. While single stage object may be smaller in computations, two-stage object detection is preferred due to the ability to localize the object. In this paper, we propose to use Faster R-CNN with VGG-16 backbone for detections of object on the street. We evaluate the method with open image subset by selecting objects that are common on street. We explore several hyper-parameters setup such as learning rate and the number of ROI regions to find the optimum set-up. We found that the use of learning rate 10-6 with Adam optimizer to be the optimum value for this task. We also found that increasing the number of ROI may benefit the performance. This shows that there is potential for getting a higher mAP with increase the amount of RoI.