Claim Missing Document
Check
Articles

Found 2 Documents
Search

Diseases Classification for Tea Plant Using Concatenated Convolution Neural Network Krisnandi, Dikdik; Pardede, Hilman F.; Yuwana, R. Sandra; Zilvan, Vicky; Heryana, Ana; Fauziah, Fani; Rahadi, Vitria Puspitasari
CommIT (Communication and Information Technology) Journal Vol 13, No 2 (2019): CommIT Vol. 13 No. 2 Tahun 2019
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/commit.v13i2.5886

Abstract

Plant diseases can cause a significant decrease in tea crop production. Early disease detection can help to minimize the loss. For tea plants, experts can identify the diseases by visual inspection on the leaves. However, providing experts to deal with disease identification may be very costly. The machine learning technology can be implemented to provide automatic plant disease detection. Currently, deep learning is state-of-the-art for object identification in computer vision. In this study, the researchers propose the Convolutional Neural Network (CNN) for tea disease detections. The researchers focus on the implementation of concatenated CNN, namely GoogleNet, Xception, and Inception-ResNet-v2, for this task. About 4727 images of tea leaves are collected, comprising of three types of diseases that commonly occur in Indonesia and a healthy class. The experimental results confirm the effectiveness of concatenated CNN for tea disease detections. The accuracy of 89.64% is achieved.
Sentiment Anlysis On Customer Reviews Using Support Vector Machine and Usability Scoring Using System Usability Scale Azpiranda, Novira; Supianto, Ahmad Afif; Setiawan, Nanang Yudi; Suryawati, Endang; Yuwana, R. Sandra; Febriandirza, Arafat
Journal of Information Technology and Computer Science Vol. 6 No. 3: December 2021
Publisher : Faculty of Computer Science (FILKOM) Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jitecs.202163330

Abstract

Al-Ghiff Steak is a restaurant located in Cirebon City that offers quality steaks at affordable prices. For maintaining a competitive Al-Ghiff Steak advantage and reputation, it is important to build a good relationship with customers and have a business strategy that considers customer opinions. However, in its implementation, Al-Ghiff Steak has difficulty when collecting and processing customer review data manually. Therefore, it is necessary to conduct sentiment analysis by utilizing Google Reviews to determine customer perspectives regarding Al-Ghiff Steak products and services. This analysis was conducted on 968 Google Review reviews from 2016 to 2020 using the Support Vector Machine (SVM) and Term Frequency-Inverse Document Frequency (TF-IDF) methods. Classification testing is done with a confusion matrix against four parameters: accuracy, precision, recall, and f1-score. SVM with TF-IDF gets accuracy value 83%, precision 64%, recall 60% and f1-score 59%. The sentiment classification result is then visualized in the form of a dashboard. We utilize the System Usability Scale (SUS) for usability testing, which produces a value of 77.5. This result achieve the Acceptable category and an Excellent rating.