Claim Missing Document
Check
Articles

Found 5 Documents
Search

EFFECT OF MINMAX NORMALIZATION ON ORB DATA FOR IMPROVED ANN ACCURACY Chepino, Basilio Gregori; Yacoub, Redi Ratiandi; Aula, Abqori; Saleh, Muhammad; Sanjaya, Bomo Wibowo
Journal of Electrical Engineering, Energy, and Information Technology (J3EIT) Vol 11, No 2: August 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/j3eit.v11i2.68689

Abstract

This study delves into the impact of MinMax normalization on Oriented FAST and Rotated BRIEF (ORB) data when utilized as input for an Artificial Neural Network (ANN). The primary objective is to compare the accuracy of an ANN model using two distinct types of input data: raw ORB data and MinMax-normalized ORB data. The results underscore the pivotal role played by MinMax normalization in significantly enhancing the performance of the ANN model. Through a series of comprehensive experiments, it becomes evident that MinMax-normalized ORB data consistently outperforms raw ORB data in terms of accuracy. Impressively, the highest accuracy attained through MinMax normalization reaches 76.6%, whereas the utilization of raw ORB data yields a maximum accuracy of merely 51.1%. This noteworthy improvement effectively validates the prowess of MinMax normalization in counteracting the adverse effects stemming from varied scales within raw data. As a result, the ANN benefits from improved pattern recognition capabilities and heightened predictive accuracy.
DEVELOPMENT OF ADVANCED MONITORING SYSTEM FOR IOT-BASED RAW WATER QUALITY PREDICTION Sari, Asri Fornika; Panjaitan, Seno Darmawan; Sanjaya, Bomo Wibowo; Saleh, Muhammad; Priyatman, Hendro
Journal of Electrical Engineering, Energy, and Information Technology (J3EIT) Vol 12, No 2: August 2024
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/j3eit.v12i2.77221

Abstract

The availability of clean water is a fundamental need for every individual, and PERUMDA Air Minum, has an important role in meeting this need in Indonesia. Water quality has a great influence on human health, so it cannot be ignored. This research developed an Internet of Things (IoT)-based raw water quality monitoring device for PERUMDA Air Minum Tirta Khatulistiwa Pontianak using a Raspberry Pi Pico W microcontroller. This device enables real-time monitoring, overcomes limitations in manual water quality monitoring, and provides remote monitoring access through the Blynk application. In addition, this research also implements the ARIMA method to predict the pH, temperature, and turbidity values of raw water in the sedimentation basin within the next seven days to support planning and treatment steps for raw water. The development of this tool aims to improve monitoring efficiency and proactive response to changes in water conditions, with the hope of being able to maintain clean water supply more effectively and overcome the constraints of manual monitoring. The results showed that the Mean Absolute Percentage Error (MAPE) of the performance of the constructed PDAM water quality monitoring device was 0,58%, while the MAPE of the predicted performance was 5,88%.
DESIGN AND IMPLEMENTATION OF AN IOT-BASED VOLUME MONITORING SYSTEM FOR A RECTANGULAR SOLID STRUCTURE Andriany, Rara Chanesha Ismi; Yacoub, Redi Ratiandi; Sanjaya, Bomo Wibowo; Priyatman, Hendro; Saleh, Muhammad
Journal of Electrical Engineering, Energy, and Information Technology (J3EIT) Vol 11, No 3: December 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/j3eit.v11i3.68696

Abstract

The calculation of volume within a three-dimensional structure has the potential to determine its enclosed mass. This research aims to create a system that utilizes data from the HC-SR04 sensor to calculate volume, incorporating the Internet of Things (IoT) for remote monitoring. The study involves the use of HC-SR04 and DHT11 sensors to gather data on filled height and temperature. The measurement approach encompasses mathematical formulas for volume and surface area that correspond to the shape of the compartment. The ESP32 microcontroller serves as the central processing unit. Experimental trials are conducted, manipulating different height levels within the object. The results reveal differences between theoretical estimations and sensor-derived assessments, highlighted by varying outcomes in specific scenarios. The calculated volume of the filled compartment is displayed on OLED-1 and transmitted through the Blynk application. This study significantly contributes to the advancement of a sensor- and IoT-driven monitoring infrastructure, facilitating the observation of filled height and volume in physical objects. Despite certain variations observed in the trials, the outcomes consistently demonstrate minimal error rates.
Navigasi Berbasis Koordinat Dengan Penghindaran Rintangan Untuk Robot Omnidireksional Setiawan, Septian; Marindani, Elang Derdian; Sanjaya, Bomo Wibowo
Jurnal Teknik Elektro dan Komputasi (ELKOM) Vol 6, No 2 (2024): ELKOM
Publisher : Universitas Muhammadiyah Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32528/elkom.v6i2.22493

Abstract

Penelitian ini berfokus pada merancang sistem navigasi untuk robot omnidireksional dalam koordinat Kartesian, mengintegrasikan odometri dan metode medan potensial untuk menghindari rintangan. Metode odometri menggunakan rotary encoder pada setiap roda untuk memantau rotasi, memperkirakan perubahan posisi robot dalam koordinat x dan y. Metode medan potensial menciptakan sistem penghindaran rintangan dinamis, memungkinkan robot untuk bergerak mengelilingi rintangan sambil tetap mempertahankan arahnya menuju koordinat yang ditentukan. Orientasi robot dilacak secara akurat menggunakan kompas digital yang terintegrasi dengan metode odometri, meningkatkan ketepatan estimasi posisi. Pengujian kinerja meliputi pergerakan bebas rintangan, pergerakan dengan rintangan, dan pembentukan pola seperti persegi, baik dengan maupun tanpa rintangan. Hasil pengujian menunjukkan Mean Absolute Error (MAE) maksimum sebesar 0,130 m pada sumbu x dan 0,134 m pada sumbu y, menunjukkan akurasi yang memuaskan. Penggabungan metode odometri dan potential field pada penelitian ini meningkatkan kemampuan navigasi dari robot dibandingkan penelitian serupa sebelumnya yang hanya menggunakan satu metode.
ANALISIS PERMUKAAN GELOMBANG AIR MENGGUNAKAN MODUL TRANSCEIVER LORA™ SX1278 DENGAN MODULASI FREQUENCY SHIFT KEYING (FSK) Wibowo, Muhammad; Priyatman, Hendro; Sanjaya, Bomo Wibowo
Journal of Electrical Engineering, Energy, and Information Technology (J3EIT) Vol 10, No 2: Juli 2022
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/j3eit.v10i2.57305

Abstract

Laut memiliki peran penting bagi kehidupan manusia, sebagai media jalan raya, sebagai sarana perdagangan, sebagai tempat rekreasi dan sebagai alat pemisah atau permersatu bangsa. Dengan perkembangan jaman, fungsi laut meningkat dikarenakan adanya supply dan demand. Akan tetapi kendala di dalam laut susah diprediksi karena karakteristik laut yang dinamis, abstrak dan terbatasnya referensi teknologi laut yang membahas tentang gelombang air. Dalam monitoring gelombang air Dengan adanya modul LoRa (Long Range) bisa memonitoring permukaan gelombang air pada tempat yang diinginkan, berkegunaan dalam pemantauan permukaan air; monitoring pembacaan karakteristik laut yang ditinjau. Dengan adanya modul LoRa (Long Range) bisa memonitoring permukaan gelombang air dilakukan analisis permukaan gelombang air menggunakan modul transceiver LoRa™ SX1278 dengan modulasi frequency shift keying (FSK). Hasil penelitian dari rancang bangun analisis gelombang air dengan mengukur ketinggian air (kenaikan permukaan air dalam kondisi awal) dan time event data. Hasil dari data ketinggian air dan time event diolah dengan software excel untuk mendapatkan data amplitudo, frekuensi dan perioda pada setiap sesi. Pada setiap sesi dari data grafik, digunakan software PyCharm untuk menampilkan grafik data tunggal sehingga bisa memberikan gambaran prilaku setiap datum yang berbanding dengan time eventnya. Perioda dan kedalaman area percobaan menjadikan variabel untuk menentukan jenis gelombang yang akan dijadikan sebagai klasifikasi jenis gelombang air. Data dari empat sesi pada tanggal 13 juli 2022 didapatkan nilai rata-rata jarak sensor ke air 22,99 cm; nilai amplitudo 13,9 cm; nilai perioda 0,13 detik; nilai frekeuensi 8,24 hz dan nilai kategori gelombang air adalah 79,02, yang memiliki kategori deep waves dikarenakan setiap sesi gelombang memenuhi kriteria deep water dengan rumus hasil kedalaman gelombang dibagi panjang gelombang lebih dari 0,5.