Shofi, Imam Marzuki
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Investigating Synthetic Traffic Generators for Zipf Distribution Simulation Accuracy Fahrianto, Feri; Arifin, Viva; Shofi, Imam Marzuki; Suseno, Hendra Bayu; Amrizal, Victor; Azhari, Muhamad; Pratiwi, Anggy Eka
JURNAL INFOTEL Vol 17 No 2 (2025): May
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v17i2.1359

Abstract

Accurate traffic generation is essential for realistic network simulations in systems such as Content Delivery Networks (CDNs), Information-Centric Networks (ICNs), and the Internet of Things (IoT). These environments handle various types of data traffic—ranging from web pages and videos to sensor data and software updates—making it critical to model traffic patterns effectively. A well-designed traffic generator enables researchers and engineers to simulate real-world workloads, test scalability, and evaluate the performance of caching, routing, and resource allocation strategies under realistic conditions. Each traffic class has unique characteristics, including object size distributions, access patterns, and temporal dynamics. Capturing these differences is key to producing meaningful simulation results. For instance, CDNs require simulation of content popularity and delivery latency, ICNs focus on content retrieval and caching efficiency, while IoT simulations demand modeling of device behavior and intermittent communication. To support such complex scenarios, a traffic generator must not only mimic real user behavior but also allow for flexible scaling, combination, and modification of traffic patterns. This paper presents a method for evaluating synthetic traffic generators by comparing their output to the statistical properties of the Zipf distribution. The focus is on assessing whether synthetic traffic accurately reflects the heavy-tailed nature of real-world traffic as modeled by Zipf’s law. By analyzing the frequency distribution of requests generated by the traffic model and comparing it to theoretical Zipf curves, the study provides insights into the fidelity of the traffic generator. We measure the discrepancy between the simulated network traffic and the theoretical model to evaluate the accuracy and realism of the traffic generation approach.
Sentiment Analysis of Twitter Discussions About Lampung Robusta Coffee: A Comparative Study of Machine Learning Algorithms with SVM as The Optimal Model Yuniarthe, Yodhi; Syarif, Admi; Shofi, Imam Marzuki; Fatimah Fahurian
JURNAL TEKNIK INFORMATIKA Vol. 18 No. 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i2.41316

Abstract

Lampung Robusta coffee is an important commodity in Indonesia, particularly in terms of local economic potential and global recognition. However, public perception of this product on social media, particularly Twitter, remains underexplored. This study addresses the need for a deeper understanding of consumer sentiment towards Lampung Robusta coffee, which could inform branding and marketing strategies. To approach this issue, we used five supervised machine learning algorithms-KNN, Naive Bayes, SVM, Decision Tree, and Logistic Regression-to perform sentiment classification on a dataset of tweets containing relevant keywords. The dataset was pre-processed using standard natural language processing techniques, including tokenization, stopword removal, and TF-IDF feature extraction. The SVM achieved the best performance on the unbalanced dataset for all metrics, with high and consistent accuracy and F1 scores. Logistic regression followed closely with similarly strong and stable results. Therefore, SVM is recommended as the final model. These results suggest that machine learning approaches can effectively classify sentiment in social media discussions about regional agricultural products and that random forest may provide the most robust performance in this context  
A Comparative Analysis of Random Forest, XGBoost, and LightGBM Algorithms for Emotion Classification in Reddit Comments Anggraini, Nenny; Putra, Syopiansyah Jaya; Wardhani, Luh Kesuma; Arif, Farid Dhiya Ul; Hakiem, Nashrul; Shofi, Imam Marzuki
JURNAL TEKNIK INFORMATIKA Vol. 17 No. 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i1.38651

Abstract

This research aims to compare the performance of three classification algorithms, namely Random Forest, XGBoost, and LightGBM, in classifying emotions in Reddit comments. Emotion classification in Reddit comments is a complex classification problem due to its numerous variations and ambiguities. This research utilizes the GoEmotions Fine-Grained dataset, filtered down to 7,325 Reddit comments with 5 different basic emotion labels. In this study, data preprocessing steps, feature extraction using CountVectorizer and TF-IDF, and hyperparameter tuning using GridSearchCV for each algorithm are conducted. Subsequently, model evaluation is performed using Cross-Validation and confusion matrix. The results of the study indicate that Random Forest outperforms the XGBoost and LightGBM algorithm with an accuracy of 75.38% compared to XGBoost with 69.05% accuracy and LightGBM with 66.63% accuracy.