Claim Missing Document
Check
Articles

Found 7 Documents
Search

3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia Aflizar, .; Idowu, Alarima Cornelius; Afrizal, Roni; Jamaluddin, .; Husnain, .; Masunaga, Tsugiyuki; Syafri, Edi; Muzakir, .
JOURNAL OF TROPICAL SOILS Vol 18, No 3: September 2013
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2013.v18i3.241-254

Abstract

Estimation of soil erosion 3D (E3D) provides basic information that can help manage agricultural areas sustainably, which has not been sufficiently conducted in Indonesia. Sumani watershed is main rice production area in West Sumatra which has experienced environmental problem such as soil erosion and production problem in recent years. 3D Agro-ecological land use planning based on soil erosion 3D hazard and economic feasibility analyses consist of production cost and prize data for each crop. Using a kriging method in Surfer tool program, have been developed data base from topographic map, Landsat TM image, climatic data and soil psychochemical properties. Using these data, the Universal Soil Loss Equation was used for spatial map of soil erosion 3D and proposed a 3D agro-ecological land use planning for sustainable land management in Sumani watershed. A 3D Agro-ecological land use planning was planned under which the land use type would not cause more than tolerable soil erosion (TER) and would be economically feasible. The study revealed that the annual average soil erosion from Sumani watershed was approximately 76.70 Mg ha-1yr-1 in 2011 where more than 100 Mg ha-1yr-1 was found on the cultivated sloping lands at agricultural field, which constitutes large portion of soil erosion in the watershed. Modification of land use with high CP values to one with lower CP values such as erosion control practices by reforestation, combination of mixed garden+beef+chicken (MBC), terrace (TBC) or contour cropping+beef+chicken (CBC) and sawah+buffalo+chicken (SBC) could reduce soil erosion rate by 83.2%, from 76.70 to 12.9 Mg ha-1 yr-1, with an increase in total profit from agricultural production of about 9.2% in whole Sumani watershed.Key words: CP-values, Erosion 3D, land use, Surfer Tool, USLE [How to Cite: Aflizar, AC Idowu, R Afrizal, Jamaluddin, E Syafri, Muzakir, Husnain and T Masunaga. 2013. 3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia. J Trop Soils 18 (3): 241-254. Doi: 10.5400/jts.2013.18.3.241][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.3.241]REEFERENCESAflizar, A Roni and T Masunaga. 2013. Assessment Erosion 3D hazard with USLE and Surfer Tool: A Case study of Sumani Watershed in West Sumatra Indonesia. J Trop Soil 18: 81-92 doi: 10.5400/jts.2012.18.1.81Aflizar, A Saidi, Husnain, Hermansah, Darmawan, Harmailis, H Soumura, T Wakatsuki and T Masunaga.  2010. Characterization of Soil Erosion Status in an Agricultural Watershed in West Sumatra, Indonesia. Tropics 19: 28-42.Agrell PJ, A Stam and GW Fischer. 2004. Interactive multiobjective agro-ecological land use planning: The Bungoma region in Kenya. Eur J Operat Res 158: 194-217Agus F, DK Cassel and DP Garrity. 1997. Soil-water and soil physical properties under countour hedgerow systems on sloping oxisols. Soil Till Res 40: 185-199.Blake GR and R Hartage. 1986. Bulk Density. In: A Klute (ed). Methods of  Soil Analysis, Part 1. Physical and Minerological Methods.   American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, p. 364-367. Brady NC and RR Weil. 2008. The Nature and Properties of Soils. Fourteenth edition reviced. Pearason International edition. Pearson education Japan. p. 121-171.Chris SR and H Harbor.  2002. Soil erosion assessment tools from point to regional scales-the role of geomorphologists in land management research and implication. Geomorphology 47: 189-209.Choudhury C, PM Chauhan, P Garg and HN Garg. 1996. Cost-Benefot ratio of triple pass solar air heates. Energy Convers  Manage  37: 95-116. Crasswell ET, A Sajjapongse, DJB Hawlett and AJ Dowling. 1997.  Agroforestry in the management of sloping lands in Asia and the Pacific. Agrofores Sys 38: 121-130.FAO [Food and Agriculture Organization]. 1993. Guidelines for Land Use Planning. FAO Development Series 1, FAO, Rome.FAO/IIASA [Food and Agriculture Organization/International Institute for Applied Systems Analysis]. 1991. Agro-Ecological Land Resources Assessment for Agricultural Development Planning; A Case Study of Kenya: Resource Database and Land Productivity. Main Report and 8 Technical Annexes. Rome, AGL-FAO. 9 vols. 1150 p. Gee GW and JW Bauder. 1986. Particle size analysis. In: A Klute (ed). Methods of soil Analysis, Part 1. Physical and mineralogical Methods, American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, pp. 399-404.Golden software. 2010. Surfer® 9 for windows. Golden, Colorado. Available online http://www.goldensoftware.com/products/surfer/surfer.shtml.Hammer WI. 1981. Second soil conservation consultant report AGOF/INS/78/006. Tech. Note No 10, Centre of Soil Research, Bogor.Irvem A, F Topaglu and V Uygur. 2007. Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol 336: 30-37.IITA [International Institute of Tropical  Agriculture]. 1979. Selected Methods for Soils and Plant Analysis, Manual Series No. 1, IITA, Ibadan, Nigeria, pp. 70.Iwata T, S Nakano and M Inoue. 2003. Impact of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecol Appl 13: 461-473.Karyono. 1990. Home garden in Java: their structure and function. In: Lan-dauer K, M Brazil (eds). Tropical Home Garden, The United Nations University Press, Tokyo, pp. 138-146.Kravchenko A and DG Bullock. 1999. A comparative study of interpolation method for mapping soil properties. Agron J 91: 393-400.Kusumandari A and BR Mitchell. 1997. Soil erosion and sediment yield in forest and agroforestry areas in West Java, Indonesia. J Soil Water Cons 52: 376-380.Lee BD, RC Graham, TE Lauren, C Amrhen and RM Creasy. 2001: Spatial Distribution of Soil Chemical condition in a serpentinitic Wetland and Surrounding Landscape. Soil Sci Soc Am J 65: 1183-1196.Margareth and Arens. 1989. World Bank Environmental Department Working paper No.18. The World Bank, Washington, DC.Paranginangin N, R Sakthivadivel, NR Scoot, E Kendy and TS Steenhuis. 2004. Water accounting for conjunctive groundwater/surface water management: case of the Singkarak-Ombilin River basin, Indonesia. J Hydrol 292: 1-22.Reeve RC. 1965. Particle-size Analysis. In: CA Black, DD Evans, JL White, Ensminger and FE Clark (eds). Methods of Soil Analysis Part 1. Physical and Mineralogical Methods, American Society of Agronomy, Madison, Wisconsin, pp. 528-530. Sarainsong F, K Harashima, H Arifin, K Gandasasmita and K Sakamoto. 2007. Practical application of a land resources information system for agricultural landscape planning. Landscpe Urban Plan 79:  38-52.Schob A, J Schmidt and R Tenholtern. 2006. Derivation of site-related measures to minimize soil erosion on the watershed scale in the Saxonian loess belt using the model erosion 3D. Catena 68: 153-160.Shi ZH, CF Cai, SW Ding, TW Wang and TL Chow. 2004. Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena  55: 33-48.Soil Survey Staff. 1990. Keys to Soil Taxonomy. Washington, DC: USDA Natural Resources Conservation Service. Available online ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/1990_Keys_to_Soil_Taxonomy.pdf.Stevenson M and H Lee. 2001. Indicator of sustainability as a tool in agricultural development: portioning scientific and participatory processes. Int J Sustain Dev World Ecol 8: 57-56.Svoray T, P Bar and T Bannet. 2005. Urban land-use allocation in a Mediterranean ecotone: Habitat heterogeneity Model incorporated in a GIS using a multi-criteria mechanism. Landscape Urban Plan 72: 337-351.Takata Y, S Funukawa, J Yanai, A Mishima, K Akshalov, N Ishida and T Kosaki. 2008. Influence of crop rotation system on the spatial and temporal variation of the soil organic carbon budget in northern Kazakhstan. Soil Sci Plant Nutr, 54: 159-171.Wakatsuki T, Y Shinmura, E Otoo and GO Olaniyan. 1998. African-based paddy field system for the integrated watershed management of the small inland valley of West Africa. FAO Water Report no. 17. pp. 5-79.Wischmeier WH and DD Smith. 1978. Predicting rainfall erosion losses: a guide to conservation farming, USDA Handbook: No. 537 US Department of Agriculture, Washington, DC pp 1-58.World Bank. 1989. World Bank Technical Paper Number 127. In: Doolette JB and WB Magrath (eds). Watershed Development in Asia. Strategies and Technologies Available online: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/1999/09/17/000178830_98101904135527/Rendered/INDEX/multi_page.txt.Zhang Y, H Yang, M Du, X Tang, H Zhang and B Peng. 2003. Soil erosion study on hillside in Southern Jiangsu province the cesium-137 tracer technique. Soil Sci Plant Nutr 49: 85-92.
Habitat Reduction and Population Structure of Endangered Asian Arowana (Scleropages formosus) Golden Red in Riau Sumatra, Indonesia Anthonius Purnama, Arief; Masunaga, Tsugiyuki
HAYATI Journal of Biosciences Vol. 32 No. 2 (2025): March 2025
Publisher : Bogor Agricultural University, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.4308/hjb.32.2.516-527

Abstract

This research was conducted in the arowana golden red Conservation Area (AgrCA) in Riau Province Rokan Hulu Regency, Sumatra, Indonesia from 2020 to 2023. The primary objective was to elucidate the population structure of arowana golden red in the midst of ongoing habitat degradation resulting from land use changes in AgrCA. Land use changes were analyzed by satellite imagery through the QGIS application. We collected population sampling data for arowana golden red by using 'fish net', 'fish trap', and 'fish scoop-net'. A comparison of satellite images taken in 2017 and 2021 revealed a reduction in swamp area by 664 ha (from 921 to 257 ha) and a decrease in swamp forest by 116 ha (from 264 to 148 ha). The conversion of swamp and swamp forests into oil palm plantations within the AgrCA has significantly diminished the natural habitat of the arowana golden red. Although there has been decreasing in swamp and swamp forests in AgrCA, the water quality in the AgrCA has remained suitable for the life of the arowana golden red. The population of arowana golden red was found to be 14-44 individuals year-1 in 2021-2023 with various sizes. Arowana golden red is most prevalent during the rainy season (July-December). Preserving the remaining swamp and swamp forests is paramount, representing a top priority. Immediate ex-situ conservation efforts are imperative, taking preemptive measures in case the arowana golden red can no longer inhabit its natural habitat.
The Long-Term Effect of Blanket Phosphorus Fertilizer Application on the Available P Content in Sawah Soils; Comparative Study in Java, Indonesia Darmawan, .; Kyuma, Kazutake; Masunaga, Tsugiyuki; Asmar, .; Darfis, Irwan; Wakatsuki, Toshiyuki
JOURNAL OF TROPICAL SOILS Vol. 14 No. 1: January 2009
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2009.v14i1.9-18

Abstract

In order to evaluate the effects of long-term phosphorus fertilizer application on the sawah soils, a comparative study was conducted in Java Island as a pioneer of Green Revolution (GR) technology application in Indonesia. Soil samples taken in 1970 by Kawaguchi and Kyuma were compared with new sample taken from the same site or the sites close to 1970 in 2003. The results showed that available phosphorus (P) sharply increased during the study period. The average content of available P in topsoil layer changed from 10.5±11.6 mg kg-1 P in 1970 to 19.6±22.4 mg kg-1 P in 2003, or increased by 118%. Long-term application of 125 kg super-phosphate [Ca(H2PO4)2] per hectares per cropping season as P fertilizers was also affected the profile distribution of available P in whole sites studied, especially in Vertisols. The land management differences between seedfarms planted with rice in monoculture systems whole study period and non-seedfarms cultivated rice and upland crops in some rotation patterns found affected the changing rate of available P in the soils. During the period of 1970-2003, average content of available P in seedfarms changed from 15.7±16.2 mg kg-1 P to 31.1±29.1 mg kg-1 P, while in non-seedfarm from 6.9±8.7 mg kg-1 P to 11.5±8.2 mg kg-1 P in 1970 and 2003, respectively. The great variation on the changing rate of available P observed in this study indicated that general chemical fertilizers recommendation in Indonesia was caused excess P input in some sites, but insufficient in others. To avoid the adverse effect of P fertilizer application in the future, recommendation of P should be based on the site characteristic and taking into account of natural resources contribution.
Nitrogen and Phosphorous Movement Characteristic in Terrace Paddy Field Using Cascade Irrigation System in West Sumatra, Indonesia Darmawan, .; Yasin, Syafrimen; Masunaga, Tsugiyuki
JOURNAL OF TROPICAL SOILS Vol. 16 No. 2: May 2011
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2011.v16i2.129-138

Abstract

West Sumatra is one of Indonesian rice bowl. The landscape of this province dominated by mountainous area with beautiful terrace paddy field lied from the middle slope to the lowland. The most common rice cultivation management in this area is application of cascade irrigation system with blanked amount of chemical fertilizer application. This study intends to figure out, whether this kind of paddy field management sustains and friendly to the environment or not. The results showed that cascade irrigation system created some discrepancies in suspended solid (SS), dissolve organic matter (DOM) and the nutrient movement characteristic a long the slope. The SS and DOM load and discharge strongly influenced by land preparation activities, while total and available nitrogen (N) and phosphorous (P) affected by chemical fertilizer application. In the upper part, the amount of chemical fertilizer seemed sufficient, indicated by negative amount of nutrient balance, while lower terrace show some indication of excess nutrient input. To avoid some demerit of cascade irrigation system, chemical fertilizer application should be base on site specific characteristic and taking into account of natural source contribution.Keywords: Cascade irrigation, chemical fertilizer, nutrient balance, terrace paddy field
Assessment Erosion 3D Hazard with USLE and Surfer Tool: A Case Study of Sumani Watershed in West Sumatra Indonesia Aflizar, .; Afrizal, Roni; Masunaga, Tsugiyuki
JOURNAL OF TROPICAL SOILS Vol. 18 No. 1: January 2013
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2013.v18i1.81-92

Abstract

Quantitative evaluation of soil erosion rate is an important basic to investigate and improve land use system, which has not been sufficiently conducted in Indonesia.  The Universal Soil Loss Equation (USLE) and Erosion Three Dimension (E3D) in Surfer were used to identify characteristic of dominant erosion factors in Sumani Watershed in West Sumatra, Indonesia using data soil survey and monitoring sediment yield in outlet watershed.  Climatology data from three stations were used to calculate Rainfall erosivity (R) factor. As many as101 sampling sites were used to investigate soil erodibility (K-factor) with physico-chemical laboratory analysis. Digital elevation model (DEM) of Sumani Watershed was used to calculate slope length and Steepness (LS-factor). Landsat TM imagery and field survey were used to determine crop management (C-factor) and conservation practices (P-factor). Calculating soil loss and map of USLE factor were determined by Kriging method in Surfer 9. Sumani Watershed had erosion hazard in criteria as: severe to extreme severe (26.23%), moderate (24.59%) and very low to low (49.18%).  Annual average soil loss for Sumani watershed was 76.70 Mg ha-1 y-1 in 2011. Upland area was designated as having a severe to extreme severe erosion hazard compared to lowland which was designated  as having very less to moderate.  On the other land, soil eroded from upland were deposited in lowland. These results were verified by comparing one year’s sediment yield observation on the outlet of the watershed. Land use (C-factor), rainfall erosivity (R- factor), soil erodibility (K-factor), slope length and steepness (LS-factor) were dominant factors that affected soil erosion. Traditional soil conservation practices were applied by farmer for a long time such as terrace in Sawah.  The USLE model in Surfer was used to identify specific regions susceptible to soil erosion by water and was also applied to identify suitable sites to conduct soil conservation planning in Sumani Watershed.[How to Cite : Aflizar, R Afrizal, T Masunaga. 2013. Assessment Erosion 3D Hazard with USLE and Surfer Tool: A Case Study of Sumani Watershed in West Sumatra Indonesia. J Trop Soils, 18 (1): 81-92. doi: 10.5400/jts.2013.18.1.81][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.81]
3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia Aflizar, .; Idowu, Alarima Cornelius; Afrizal, Roni; Jamaluddin, .; Husnain, .; Masunaga, Tsugiyuki; Syafri, Edi; Muzakir, .
JOURNAL OF TROPICAL SOILS Vol. 18 No. 3: September 2013
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2013.v18i3.241-254

Abstract

Estimation of soil erosion 3D (E3D) provides basic information that can help manage agricultural areas sustainably, which has not been sufficiently conducted in Indonesia. Sumani watershed is main rice production area in West Sumatra which has experienced environmental problem such as soil erosion and production problem in recent years. 3D Agro-ecological land use planning based on soil erosion 3D hazard and economic feasibility analyses consist of production cost and prize data for each crop. Using a kriging method in Surfer tool program, have been developed data base from topographic map, Landsat TM image, climatic data and soil psychochemical properties. Using these data, the Universal Soil Loss Equation was used for spatial map of soil erosion 3D and proposed a 3D agro-ecological land use planning for sustainable land management in Sumani watershed. A 3D Agro-ecological land use planning was planned under which the land use type would not cause more than tolerable soil erosion (TER) and would be economically feasible. The study revealed that the annual average soil erosion from Sumani watershed was approximately 76.70 Mg ha-1yr-1 in 2011 where more than 100 Mg ha-1yr-1 was found on the cultivated sloping lands at agricultural field, which constitutes large portion of soil erosion in the watershed. Modification of land use with high CP values to one with lower CP values such as erosion control practices by reforestation, combination of mixed garden+beef+chicken (MBC), terrace (TBC) or contour cropping+beef+chicken (CBC) and sawah+buffalo+chicken (SBC) could reduce soil erosion rate by 83.2%, from 76.70 to 12.9 Mg ha-1 yr-1, with an increase in total profit from agricultural production of about 9.2% in whole Sumani watershed.Key words: CP-values, Erosion 3D, land use, Surfer Tool, USLE [How to Cite: Aflizar, AC Idowu, R Afrizal, Jamaluddin, E Syafri, Muzakir, Husnain and T Masunaga. 2013. 3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia. J Trop Soils 18 (3): 241-254. Doi: 10.5400/jts.2013.18.3.241][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.3.241]REEFERENCESAflizar, A Roni and T Masunaga. 2013. Assessment Erosion 3D hazard with USLE and Surfer Tool: A Case study of Sumani Watershed in West Sumatra Indonesia. J Trop Soil 18: 81-92 doi: 10.5400/jts.2012.18.1.81Aflizar, A Saidi, Husnain, Hermansah, Darmawan, Harmailis, H Soumura, T Wakatsuki and T Masunaga. 2010. Characterization of Soil Erosion Status in an Agricultural Watershed in West Sumatra, Indonesia. Tropics 19: 28-42.Agrell PJ, A Stam and GW Fischer. 2004. Interactive multiobjective agro-ecological land use planning: The Bungoma region in Kenya. Eur J Operat Res 158: 194-217Agus F, DK Cassel and DP Garrity. 1997. Soil-water and soil physical properties under countour hedgerow systems on sloping oxisols. Soil Till Res 40: 185-199.Blake GR and R Hartage. 1986. Bulk Density. In: A Klute (ed). Methods of Soil Analysis, Part 1. Physical and Minerological Methods. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, p. 364-367. Brady NC and RR Weil. 2008. The Nature and Properties of Soils. Fourteenth edition reviced. Pearason International edition. Pearson education Japan. p. 121-171.Chris SR and H Harbor. 2002. Soil erosion assessment tools from point to regional scales-the role of geomorphologists in land management research and implication. Geomorphology 47: 189-209.Choudhury C, PM Chauhan, P Garg and HN Garg. 1996. Cost-Benefot ratio of triple pass solar air heates. Energy Convers Manage 37: 95-116. Crasswell ET, A Sajjapongse, DJB Hawlett and AJ Dowling. 1997. Agroforestry in the management of sloping lands in Asia and the Pacific. Agrofores Sys 38: 121-130.FAO [Food and Agriculture Organization]. 1993. Guidelines for Land Use Planning. FAO Development Series 1, FAO, Rome.FAO/IIASA [Food and Agriculture Organization/International Institute for Applied Systems Analysis]. 1991. Agro-Ecological Land Resources Assessment for Agricultural Development Planning; A Case Study of Kenya: Resource Database and Land Productivity. Main Report and 8 Technical Annexes. Rome, AGL-FAO. 9 vols. 1150 p. Gee GW and JW Bauder. 1986. Particle size analysis. In: A Klute (ed). Methods of soil Analysis, Part 1. Physical and mineralogical Methods, American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, pp. 399-404.Golden software. 2010. Surfer® 9 for windows. Golden, Colorado. Available online http://www.goldensoftware.com/products/surfer/surfer.shtml.Hammer WI. 1981. Second soil conservation consultant report AGOF/INS/78/006. Tech. Note No 10, Centre of Soil Research, Bogor.Irvem A, F Topaglu and V Uygur. 2007. Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol 336: 30-37.IITA [International Institute of Tropical Agriculture]. 1979. Selected Methods for Soils and Plant Analysis, Manual Series No. 1, IITA, Ibadan, Nigeria, pp. 70.Iwata T, S Nakano and M Inoue. 2003. Impact of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecol Appl 13: 461-473.Karyono. 1990. Home garden in Java: their structure and function. In: Lan-dauer K, M Brazil (eds). Tropical Home Garden, The United Nations University Press, Tokyo, pp. 138-146.Kravchenko A and DG Bullock. 1999. A comparative study of interpolation method for mapping soil properties. Agron J 91: 393-400.Kusumandari A and BR Mitchell. 1997. Soil erosion and sediment yield in forest and agroforestry areas in West Java, Indonesia. J Soil Water Cons 52: 376-380.Lee BD, RC Graham, TE Lauren, C Amrhen and RM Creasy. 2001: Spatial Distribution of Soil Chemical condition in a serpentinitic Wetland and Surrounding Landscape. Soil Sci Soc Am J 65: 1183-1196.Margareth and Arens. 1989. World Bank Environmental Department Working paper No.18. The World Bank, Washington, DC.Paranginangin N, R Sakthivadivel, NR Scoot, E Kendy and TS Steenhuis. 2004. Water accounting for conjunctive groundwater/surface water management: case of the Singkarak-Ombilin River basin, Indonesia. J Hydrol 292: 1-22.Reeve RC. 1965. Particle-size Analysis. In: CA Black, DD Evans, JL White, Ensminger and FE Clark (eds). Methods of Soil Analysis Part 1. Physical and Mineralogical Methods, American Society of Agronomy, Madison, Wisconsin, pp. 528-530. Sarainsong F, K Harashima, H Arifin, K Gandasasmita and K Sakamoto. 2007. Practical application of a land resources information system for agricultural landscape planning. Landscpe Urban Plan 79: 38-52.Schob A, J Schmidt and R Tenholtern. 2006. Derivation of site-related measures to minimize soil erosion on the watershed scale in the Saxonian loess belt using the model erosion 3D. Catena 68: 153-160.Shi ZH, CF Cai, SW Ding, TW Wang and TL Chow. 2004. Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena 55: 33-48.Soil Survey Staff. 1990. Keys to Soil Taxonomy. Washington, DC: USDA Natural Resources Conservation Service. Available online ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/1990_Keys_to_Soil_Taxonomy.pdf.Stevenson M and H Lee. 2001. Indicator of sustainability as a tool in agricultural development: portioning scientific and participatory processes. Int J Sustain Dev World Ecol 8: 57-56.Svoray T, P Bar and T Bannet. 2005. Urban land-use allocation in a Mediterranean ecotone: Habitat heterogeneity Model incorporated in a GIS using a multi-criteria mechanism. Landscape Urban Plan 72: 337-351.Takata Y, S Funukawa, J Yanai, A Mishima, K Akshalov, N Ishida and T Kosaki. 2008. Influence of crop rotation system on the spatial and temporal variation of the soil organic carbon budget in northern Kazakhstan. Soil Sci Plant Nutr, 54: 159-171.Wakatsuki T, Y Shinmura, E Otoo and GO Olaniyan. 1998. African-based paddy field system for the integrated watershed management of the small inland valley of West Africa. FAO Water Report no. 17. pp. 5-79.Wischmeier WH and DD Smith. 1978. Predicting rainfall erosion losses: a guide to conservation farming, USDA Handbook: No. 537 US Department of Agriculture, Washington, DC pp 1-58.World Bank. 1989. World Bank Technical Paper Number 127. In: Doolette JB and WB Magrath (eds). Watershed Development in Asia. Strategies and Technologies Available online: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/1999/09/17/000178830_98101904135527/Rendered/INDEX/multi_page.txt.Zhang Y, H Yang, M Du, X Tang, H Zhang and B Peng. 2003. Soil erosion study on hillside in Southern Jiangsu province the cesium-137 tracer technique. Soil Sci Plant Nutr 49: 85-92.
Beneficial Effect of Silicon Application and Intermittent Irrigation on Improving Rice Productivity in Indonesia Fatmah Siregar, Adha; Ibrahim Adamy Sipahutar; Husnain; Masunaga, Tsugiyuki
Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy) Vol. 48 No. 1 (2020): Jurnal Agronomi Indonesia
Publisher : Indonesia Society of Agronomy (PERAGI) and Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (391.442 KB) | DOI: 10.24831/jai.v48i1.29378

Abstract

Penggunaan pupuk silika dipercaya dapat meningkatkan produksi padi, tetapi penelitian pengaruh silika pada tanaman padi di Indonesia masih terbatas. Penelitian bertujuan mengetahui pengaruh kombinasi pemberian pupuk silika dan pengelolaan air pada pertumbuhan dan produktivitas tanaman padi. Penelitian yang dilaksanakan di kebun percobaan Balai Penelitian Lingkungan Pertanian, Jakenan, Pati, Jawa Tengah pada musim hujan. Percobaan menggunakan rancangan petak terbagi dengan empat ulangan. Sebagai petak utama adalah perbedaan pengelolaan air sedangkan anak petak adalah perlakuan pupuk silika. Hasil penelitian menunjukkan bahwa pemberian silika meningkatkan ketahanan serangan penyakit blas. Pemberian silika nyata menurunkan serangan blas daun dan leher yang diduga karena adanya peningkatan Si daun. Pengelolaan air berselang (IT) nyata pada meningkatkan hasil dibandingkan pengelolaan air konvensional (CF). Perlakuan IT meningkatkan pertumbuhan akar dan berdampak pada peningkatan pertumbuhan dan hasil padi. Perlakuan IT juga nyata meningkatkan kandungan hara Cu, Mn, dan Zn pada beras. Kombinasi pemberian silika dan pengelolaan air IT meningkatkan produktivitas tanaman padi terutama pada daerah dengan ketersediaan air terbatas. Kata kunci: pemberian silikon, penyakit blas, pengelolaan air, produktivitas padi, rebah