Claim Missing Document
Check
Articles

Found 12 Documents
Search

PENERAPAN MODEL PEMBELAJARAN KOOPERATIF TIPE EXAMPLES NON EXAMPLES UNTUK MENINGKATKAN HASIL BELAJAR IPS SISWA KELAS IV SDN 015 TANJUNG LEBAN KECAMATAN KUBU KABUPATEN ROKAN HILIR Syafri, Edi; Daud, Damanhuri; Munjiatun, Munjiatun
Jurnal Online Mahasiswa (JOM) Bidang Keguruan dan Ilmu Pendidikan Vol 3, No 1 (2016): Wisuda Februari 2016
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Keguruan dan Ilmu Pendidikan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract. The rescearch is cause is the low social studies students learning outcomes with average grade 56. While the udue of minimum criteria of completenes is 65 this researches is classroom action research (CAR). That suppose to incriasing of the social studies students learning outcomes of fourth grade of elementery school 028 Sintong Tanah Putih in Rokan Hilir district. The formula of the problem is does the aplication of cooperative learning model type two stay two stray (TSTS) can inprove the social studies studen learning outcomes of fourth grade SDN 015 Tanjung Leban Kubu in Rokan Hilir District. Before dairy CAR the students good average grade 56. Ard after CAR the average grade in create is 66% whereas on the scord cycle the average grade increase is 71,5. So the improvement of students learning out comes from the bassed score to cycle I increase about 17,85% whereas from based score to cycle II increase about 27,67%. The activity of the student in first cycle with an average grade 50% and the scord cycle is about 66,66%. The activity of the teacher on the first cycle with an average grade 58,33% and the secord cycle is about 70,83%. The result of this research is the application of cooperative learning model type examples non examples can increase the social studies students learning outcomes at fourth brade of elementary 015 Tanjung Leban Kubu in Rokan Hilir District.Key Word : Kooperative type examples non examples The social student achievement
3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia Aflizar, .; Idowu, Alarima Cornelius; Afrizal, Roni; Jamaluddin, .; Husnain, .; Masunaga, Tsugiyuki; Syafri, Edi; Muzakir, .
JOURNAL OF TROPICAL SOILS Vol 18, No 3: September 2013
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2013.v18i3.241-254

Abstract

Estimation of soil erosion 3D (E3D) provides basic information that can help manage agricultural areas sustainably, which has not been sufficiently conducted in Indonesia. Sumani watershed is main rice production area in West Sumatra which has experienced environmental problem such as soil erosion and production problem in recent years. 3D Agro-ecological land use planning based on soil erosion 3D hazard and economic feasibility analyses consist of production cost and prize data for each crop. Using a kriging method in Surfer tool program, have been developed data base from topographic map, Landsat TM image, climatic data and soil psychochemical properties. Using these data, the Universal Soil Loss Equation was used for spatial map of soil erosion 3D and proposed a 3D agro-ecological land use planning for sustainable land management in Sumani watershed. A 3D Agro-ecological land use planning was planned under which the land use type would not cause more than tolerable soil erosion (TER) and would be economically feasible. The study revealed that the annual average soil erosion from Sumani watershed was approximately 76.70 Mg ha-1yr-1 in 2011 where more than 100 Mg ha-1yr-1 was found on the cultivated sloping lands at agricultural field, which constitutes large portion of soil erosion in the watershed. Modification of land use with high CP values to one with lower CP values such as erosion control practices by reforestation, combination of mixed garden+beef+chicken (MBC), terrace (TBC) or contour cropping+beef+chicken (CBC) and sawah+buffalo+chicken (SBC) could reduce soil erosion rate by 83.2%, from 76.70 to 12.9 Mg ha-1 yr-1, with an increase in total profit from agricultural production of about 9.2% in whole Sumani watershed.Key words: CP-values, Erosion 3D, land use, Surfer Tool, USLE [How to Cite: Aflizar, AC Idowu, R Afrizal, Jamaluddin, E Syafri, Muzakir, Husnain and T Masunaga. 2013. 3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia. J Trop Soils 18 (3): 241-254. Doi: 10.5400/jts.2013.18.3.241][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.3.241]REEFERENCESAflizar, A Roni and T Masunaga. 2013. Assessment Erosion 3D hazard with USLE and Surfer Tool: A Case study of Sumani Watershed in West Sumatra Indonesia. J Trop Soil 18: 81-92 doi: 10.5400/jts.2012.18.1.81Aflizar, A Saidi, Husnain, Hermansah, Darmawan, Harmailis, H Soumura, T Wakatsuki and T Masunaga.  2010. Characterization of Soil Erosion Status in an Agricultural Watershed in West Sumatra, Indonesia. Tropics 19: 28-42.Agrell PJ, A Stam and GW Fischer. 2004. Interactive multiobjective agro-ecological land use planning: The Bungoma region in Kenya. Eur J Operat Res 158: 194-217Agus F, DK Cassel and DP Garrity. 1997. Soil-water and soil physical properties under countour hedgerow systems on sloping oxisols. Soil Till Res 40: 185-199.Blake GR and R Hartage. 1986. Bulk Density. In: A Klute (ed). Methods of  Soil Analysis, Part 1. Physical and Minerological Methods.   American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, p. 364-367. Brady NC and RR Weil. 2008. The Nature and Properties of Soils. Fourteenth edition reviced. Pearason International edition. Pearson education Japan. p. 121-171.Chris SR and H Harbor.  2002. Soil erosion assessment tools from point to regional scales-the role of geomorphologists in land management research and implication. Geomorphology 47: 189-209.Choudhury C, PM Chauhan, P Garg and HN Garg. 1996. Cost-Benefot ratio of triple pass solar air heates. Energy Convers  Manage  37: 95-116. Crasswell ET, A Sajjapongse, DJB Hawlett and AJ Dowling. 1997.  Agroforestry in the management of sloping lands in Asia and the Pacific. Agrofores Sys 38: 121-130.FAO [Food and Agriculture Organization]. 1993. Guidelines for Land Use Planning. FAO Development Series 1, FAO, Rome.FAO/IIASA [Food and Agriculture Organization/International Institute for Applied Systems Analysis]. 1991. Agro-Ecological Land Resources Assessment for Agricultural Development Planning; A Case Study of Kenya: Resource Database and Land Productivity. Main Report and 8 Technical Annexes. Rome, AGL-FAO. 9 vols. 1150 p. Gee GW and JW Bauder. 1986. Particle size analysis. In: A Klute (ed). Methods of soil Analysis, Part 1. Physical and mineralogical Methods, American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, pp. 399-404.Golden software. 2010. Surfer® 9 for windows. Golden, Colorado. Available online http://www.goldensoftware.com/products/surfer/surfer.shtml.Hammer WI. 1981. Second soil conservation consultant report AGOF/INS/78/006. Tech. Note No 10, Centre of Soil Research, Bogor.Irvem A, F Topaglu and V Uygur. 2007. Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol 336: 30-37.IITA [International Institute of Tropical  Agriculture]. 1979. Selected Methods for Soils and Plant Analysis, Manual Series No. 1, IITA, Ibadan, Nigeria, pp. 70.Iwata T, S Nakano and M Inoue. 2003. Impact of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecol Appl 13: 461-473.Karyono. 1990. Home garden in Java: their structure and function. In: Lan-dauer K, M Brazil (eds). Tropical Home Garden, The United Nations University Press, Tokyo, pp. 138-146.Kravchenko A and DG Bullock. 1999. A comparative study of interpolation method for mapping soil properties. Agron J 91: 393-400.Kusumandari A and BR Mitchell. 1997. Soil erosion and sediment yield in forest and agroforestry areas in West Java, Indonesia. J Soil Water Cons 52: 376-380.Lee BD, RC Graham, TE Lauren, C Amrhen and RM Creasy. 2001: Spatial Distribution of Soil Chemical condition in a serpentinitic Wetland and Surrounding Landscape. Soil Sci Soc Am J 65: 1183-1196.Margareth and Arens. 1989. World Bank Environmental Department Working paper No.18. The World Bank, Washington, DC.Paranginangin N, R Sakthivadivel, NR Scoot, E Kendy and TS Steenhuis. 2004. Water accounting for conjunctive groundwater/surface water management: case of the Singkarak-Ombilin River basin, Indonesia. J Hydrol 292: 1-22.Reeve RC. 1965. Particle-size Analysis. In: CA Black, DD Evans, JL White, Ensminger and FE Clark (eds). Methods of Soil Analysis Part 1. Physical and Mineralogical Methods, American Society of Agronomy, Madison, Wisconsin, pp. 528-530. Sarainsong F, K Harashima, H Arifin, K Gandasasmita and K Sakamoto. 2007. Practical application of a land resources information system for agricultural landscape planning. Landscpe Urban Plan 79:  38-52.Schob A, J Schmidt and R Tenholtern. 2006. Derivation of site-related measures to minimize soil erosion on the watershed scale in the Saxonian loess belt using the model erosion 3D. Catena 68: 153-160.Shi ZH, CF Cai, SW Ding, TW Wang and TL Chow. 2004. Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena  55: 33-48.Soil Survey Staff. 1990. Keys to Soil Taxonomy. Washington, DC: USDA Natural Resources Conservation Service. Available online ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/1990_Keys_to_Soil_Taxonomy.pdf.Stevenson M and H Lee. 2001. Indicator of sustainability as a tool in agricultural development: portioning scientific and participatory processes. Int J Sustain Dev World Ecol 8: 57-56.Svoray T, P Bar and T Bannet. 2005. Urban land-use allocation in a Mediterranean ecotone: Habitat heterogeneity Model incorporated in a GIS using a multi-criteria mechanism. Landscape Urban Plan 72: 337-351.Takata Y, S Funukawa, J Yanai, A Mishima, K Akshalov, N Ishida and T Kosaki. 2008. Influence of crop rotation system on the spatial and temporal variation of the soil organic carbon budget in northern Kazakhstan. Soil Sci Plant Nutr, 54: 159-171.Wakatsuki T, Y Shinmura, E Otoo and GO Olaniyan. 1998. African-based paddy field system for the integrated watershed management of the small inland valley of West Africa. FAO Water Report no. 17. pp. 5-79.Wischmeier WH and DD Smith. 1978. Predicting rainfall erosion losses: a guide to conservation farming, USDA Handbook: No. 537 US Department of Agriculture, Washington, DC pp 1-58.World Bank. 1989. World Bank Technical Paper Number 127. In: Doolette JB and WB Magrath (eds). Watershed Development in Asia. Strategies and Technologies Available online: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/1999/09/17/000178830_98101904135527/Rendered/INDEX/multi_page.txt.Zhang Y, H Yang, M Du, X Tang, H Zhang and B Peng. 2003. Soil erosion study on hillside in Southern Jiangsu province the cesium-137 tracer technique. Soil Sci Plant Nutr 49: 85-92.
The Effect of Using Cellulose Nanofiber from Kapok (Ceiba pentandra, L) as Reinforcement on The Properties of Recycled Papers Rezekinta, Fransiska Angelina; Kasim, Anwar; Syafri, Edi; Ridwan , Firman; Chaniago , Irawati; Ichiura, Hideaki
Journal of Applied Agricultural Science and Technology Vol. 8 No. 4 (2024): Journal of Applied Agricultural Science and Technology
Publisher : Green Engineering Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55043/jaast.v8i4.327

Abstract

Recycling is important for achieving environmentally sustainable products and waste reduction. The trend has led to the addition of reinforcement to recycling process to ensure the effective usage of wasted papers. Therefore, this study was conducted to determine the effect of using cellulose nanofiber (CNF) synthesized from kapok fibers as reinforcement in recycled papers. CNF was applied at different concentrations of 2, 4, 6, 8, and 10% of recycled paper production and the analysis was conducted by testing tensile index, density, and brightness. Moreover, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and UV-Vis analysis were used to determine the characteristics of the paper. The results showed that CNF addition influenced tensile index, brightness, and density of recycled papers. This was observed from an increase in tensile strength by up to 76.32% and density at approximately 0.58 g/cm3 for 10% CNF addition. Meanwhile, the brightness level was reduced due to the compact nature of paper produced. The trend led to the conclusion that the addition of CNF could impact the characteristics of recycled papers.
PROTOTIPE ALAT PENGERING GAMBIR: PROTOTIPE ALAT PENGERING GAMBIR defrian, angga; Syafri, Edi; Melly, Sandra; Anas, Irwan; Rildiwan, Rildiwan; Zulfakri, Zulfakri; Damanik, Annisa P
Atech-i Vol. 2 No. 1 (2024): Tahun 2024
Publisher : Green Engineering Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55043/atech-i.v2i1.27

Abstract

Gambir (Uncaria gambir Roxb.) dikenal karena kandungan tanninnya, terutama katekin, yang memiliki berbagai manfaat di bidang farmasi, makanan, dan kosmetik. Proses pengeringan gambir sangat penting untuk mengurangi kadar air dan menjaga kualitas ekstraknya. Namun, pengeringan yang tidak tepat, seperti suhu yang terlalu tinggi, dapat merusak senyawa aktif, mengurangi efektivitas, dan memperpendek umur simpan produk. Penelitian ini bertujuan untuk mengembangkan prototipe alat pengering gambir yang efisien, mampu mempertahankan kualitas senyawa aktif, serta meningkatkan daya saing industri pengolahan gambir. Metodologi yang digunakan meliputi pengukuran suhu secara manual dan simulasi menggunakan Computational Fluid Dynamics (CFD). Alat yang dirancang memiliki dimensi P x L x T sebesar 37 cm x 33 cm x 36 cm. Waktu yang dibutuhkan untuk mencapai suhu 38°C adalah 1080 detik. Hasil pengukuran menunjukkan error sebesar 0,04% pada posisi tempat wadah gambir (A) dan 4,9% pada bagian dekat pemanas (B).
Rekayasa Mesin Pembuat Pelet Pakan Ikan untuk Meningkatkan Efisiensi Produksi Elfina, Sri; Arifin, M.; Syafri, Edi; Azharman, Zefri
Agroteknika Vol 8 No 1 (2025): Maret 2025
Publisher : Green Engineering Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55043/agroteknika.v8i1.426

Abstract

Sektor perikanan budidaya memainkan peran penting dalam ketahanan pangan dan ekonomi nasional Indonesia. Peningkatan produksi ikan menuntut ketersediaan pakan yang efisien, namun biaya pakan komersial yang tinggi menjadi kendala besar, terutama bagi pembudidaya kecil dan menengah. Penelitian ini bertujuan untuk merancang mesin pelet pakan ikan yang harganya terjangkau, bertenaga bensin, dengan kapasitas produksi 20-50 kg/jam, untuk mendukung produksi pakan mandiri. Metode yang digunakan meliputi perancangan dan perakitan mesin dengan komponen utama berupa screw extruder, roda penggerak, dan cetakan (die). Prototipe mesin memiliki dimensi 60 x 40 x 70 cm, menggunakan motor penggerak 4 tak (3600 rpm, 196 cc, bensin), tipe pencetakan screw extruder dengan diameter die 3 mm, tabung penggiling berukuran panjang 23 cm dan diameter 7 cm. Prototipe mesin diuji dengan bahan baku seberat 10 kg sebanyak lima kali. Hasil menunjukkan mesin dapat menghasilkan daya maksimum 3,46 kW, dengan putaran 720 rpm (maksimum) dan 200 rpm (minimum). Rata-rata kapasitas produksi mencapai 49,49 kg/jam, lebih tinggi dibandingkan mesin motor listrik 1 Hp pada penelitian sebelumnya yang menghasilkan 39,83 kg/jam. Selain itu, analisis scatterplot menunjukkan bahwa semakin banyak pelet yang dihasilkan, semakin lama waktu yang diperlukan, menandakan hubungan linier antara jumlah dan waktu produksi. Beberapa perbaikan diperlukan, seperti penambahan pengunci roda untuk kestabilan. Penelitian lanjutan perlu dilakukan untuk mengoptimalkan konsumsi bahan bakar dan mengevaluasi interval pemeliharaan. Hasil penelitian ini diharapkan dapat memberikan alternatif solusi mesin pelet yang efisien bagi pembudidaya skala kecil dan menengah.
Review Media Tanam dan Hasil Jamur Tiram putih (Pleurotus ostreotus) Pratiwi, Nanda Audia; Alfi, Hendra; R, Benny Warman; Syafri, Edi
Agroteknika Vol 8 No 1 (2025): Maret 2025
Publisher : Green Engineering Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55043/agroteknika.v8i1.476

Abstract

Topik literatur review ini mengulas mengenai beberapa jenis bahan pembuat media tanam jamur tiram. Ulasan dalam literatur review ini diambil dari artikel dengan topik yang sesuai dengan topik tersebut. Terdapat banyak jenis bahan media tanam yang digunakan oleh petani sebagai media budidaya jamur tiram, dan tentunya memiliki kelebihan dan kelemahan dari masing-masing bahan. Tujuan kajian ini adalah untuk memberikan rekomendasi rancangan bahan media tanam yang tepat dalam kegiatan budidaya jamur tiram konvesional agar dapat menghasilkan produksi yang optimal dan dapat dipergunakan untuk menentukan topik utama peninjauan literatur di masa mendatang. 30 naskah artikel yang dikaji dari tahun 2015 hingga 2024 diperoleh dari jurnal yang terdaftar pada SINTA dan laman penyedia artikel ilmiah Google Scholar. Spesifikasi ulasan dibuat berdasarkan literature review. Hasil literatur review ini diperoleh bahwa dari beberapa jenis bahan yang digunakan sebagai media tanam seperti serbuk kayu, jerami, eceng gondok, sekam, sabut kelapa, ampas tahu, daun durian, dan pelepah sawit bagi jamur tiram diperoleh hasil analisis bahwa bahan yang paling tepat dengan hasil yang optimal bagi produktivitas jamur tiram yaitu bahan pelepah sawit komposisi 100% yang mampu menghasilkan jamur tiram sebanyak 650 g/ baglognya. Selain itu, penggunaan kombinasi serbuk kayu 85% + sekam padi 15% memiliki hasil yang cukup optimal yaitu 493,98 g/ baglog. Hal ini dapat disesuaikan dengan kondisi dan situasi ataupun ketersediaan sumberdaya di sekitar agar dapat dimanfaatkan dan menghindari pencemaran lingkungan.
THERMAL, MECHANICAL, AND MICROSTRUCTURE CHARACTERISTICS OF PAEDERIA FOETIDA FIBERS/CARBON POWDER HYBRID REINFORCED EPOXY COMPOSITES Sari, Nasmi Herlina; Suteja; Syafri, Edi
Indonesian Journal of Forestry Research Vol. 12 No. 1 (2025): Indonesian Journal of Forestry Research
Publisher : Association of Indonesian Forestry and Environment Researchers and Technicians

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59465/ijfr.2025.12.1.27-38

Abstract

Increased environmental and sustainability awareness has fueled efforts to develop bio-based composite materials for a wide range of end-use applications, as well as new alternatives to non-renewable synthetic fibers such as glass and carbon-reinforced composites. Considering development and research, Paederia foetida fiber stem (PFs) reinforced composites have recently generated a lot of interest. Hybrids of PFs with carbon powder (CP) have been explored in order to achieve the best properties for composites. This study focused on investigating the microstructural, mechanical, thermal, and density characteristics of hybrid reinforced epoxy composites made of CP/PFs. Several compositions of PFs and CP (30:0, 20:10, 15:15, 10:20, and 0:30 vol.), were prepared to manufacture composite using a hot press method. The effect of the volume fraction of carbon/PFs on the mechanical, thermal, and fracture structure properties of hybrid composites was examined. The findings showed that sample CDS20 which was made up of 20% PFs and 10% CP had the highest tensile strength (42.3 ± 2.7 MPa) and elastic modulus (2310.8 ± 91 MPa). It also had quite high thermal resistance properties with a residual charcoal content of about 23.8%. SEM analysis showed agglomeration of CP and the number of voids decreased as the volume fraction of PFs increased, and the interfaces between CP-PFs-epoxy appeared denser. For infrastructure applications, this composite may serve as an alternative to epoxy composites reinforced with sisal fiber.
Tanggungjawab Orang Tua terhadap Pendidikan Anak Usia Dini Perspektif Hadis Usman, Usman; Syafri, Edi; Rehani, Rehani; Tamrin, Muhammad Isnando; Zalkhairi, Zalkhairi
Studi Multidisipliner: Jurnal Kajian Keislaman Vol 8, No 2 (2021)
Publisher : Universitas Islam Negeri Syekh Ali Hasan Ahmad Addary Padngsidimpuan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24952/multidisipliner.v8i2.3949

Abstract

This study aims to describe the responsibilities of parents towards children's education at an early age by using a hadith perspective. Parents who are in charge of education have a very dominant role in the process of children's education. Parents and children have an emotional relationship and intensive educative inter action, this can be a positive educational atmosphere. This article is a theoretical study by using data sources from library searches in the form of books and journal articles related to the formulation of the problem. The approach used is an educative approach, which examines the responsibility of parents to children's education at an early age in the perspective of hadith by using qualitative data analysis methods. The research findings are parents as the party who is in the first order responsible for their children's education. The responsibility of parents regarding education concerns the good of the child in this world and the hereafter. The responsibility for children's education has been prepared long before the child is born. In this research there are nine forms of parental responsibility for the education of children at an early age.
3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia Aflizar, .; Idowu, Alarima Cornelius; Afrizal, Roni; Jamaluddin, .; Husnain, .; Masunaga, Tsugiyuki; Syafri, Edi; Muzakir, .
JOURNAL OF TROPICAL SOILS Vol. 18 No. 3: September 2013
Publisher : UNIVERSITY OF LAMPUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5400/jts.2013.v18i3.241-254

Abstract

Estimation of soil erosion 3D (E3D) provides basic information that can help manage agricultural areas sustainably, which has not been sufficiently conducted in Indonesia. Sumani watershed is main rice production area in West Sumatra which has experienced environmental problem such as soil erosion and production problem in recent years. 3D Agro-ecological land use planning based on soil erosion 3D hazard and economic feasibility analyses consist of production cost and prize data for each crop. Using a kriging method in Surfer tool program, have been developed data base from topographic map, Landsat TM image, climatic data and soil psychochemical properties. Using these data, the Universal Soil Loss Equation was used for spatial map of soil erosion 3D and proposed a 3D agro-ecological land use planning for sustainable land management in Sumani watershed. A 3D Agro-ecological land use planning was planned under which the land use type would not cause more than tolerable soil erosion (TER) and would be economically feasible. The study revealed that the annual average soil erosion from Sumani watershed was approximately 76.70 Mg ha-1yr-1 in 2011 where more than 100 Mg ha-1yr-1 was found on the cultivated sloping lands at agricultural field, which constitutes large portion of soil erosion in the watershed. Modification of land use with high CP values to one with lower CP values such as erosion control practices by reforestation, combination of mixed garden+beef+chicken (MBC), terrace (TBC) or contour cropping+beef+chicken (CBC) and sawah+buffalo+chicken (SBC) could reduce soil erosion rate by 83.2%, from 76.70 to 12.9 Mg ha-1 yr-1, with an increase in total profit from agricultural production of about 9.2% in whole Sumani watershed.Key words: CP-values, Erosion 3D, land use, Surfer Tool, USLE [How to Cite: Aflizar, AC Idowu, R Afrizal, Jamaluddin, E Syafri, Muzakir, Husnain and T Masunaga. 2013. 3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia. J Trop Soils 18 (3): 241-254. Doi: 10.5400/jts.2013.18.3.241][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.3.241]REEFERENCESAflizar, A Roni and T Masunaga. 2013. Assessment Erosion 3D hazard with USLE and Surfer Tool: A Case study of Sumani Watershed in West Sumatra Indonesia. J Trop Soil 18: 81-92 doi: 10.5400/jts.2012.18.1.81Aflizar, A Saidi, Husnain, Hermansah, Darmawan, Harmailis, H Soumura, T Wakatsuki and T Masunaga. 2010. Characterization of Soil Erosion Status in an Agricultural Watershed in West Sumatra, Indonesia. Tropics 19: 28-42.Agrell PJ, A Stam and GW Fischer. 2004. Interactive multiobjective agro-ecological land use planning: The Bungoma region in Kenya. Eur J Operat Res 158: 194-217Agus F, DK Cassel and DP Garrity. 1997. Soil-water and soil physical properties under countour hedgerow systems on sloping oxisols. Soil Till Res 40: 185-199.Blake GR and R Hartage. 1986. Bulk Density. In: A Klute (ed). Methods of Soil Analysis, Part 1. Physical and Minerological Methods. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, p. 364-367. Brady NC and RR Weil. 2008. The Nature and Properties of Soils. Fourteenth edition reviced. Pearason International edition. Pearson education Japan. p. 121-171.Chris SR and H Harbor. 2002. Soil erosion assessment tools from point to regional scales-the role of geomorphologists in land management research and implication. Geomorphology 47: 189-209.Choudhury C, PM Chauhan, P Garg and HN Garg. 1996. Cost-Benefot ratio of triple pass solar air heates. Energy Convers Manage 37: 95-116. Crasswell ET, A Sajjapongse, DJB Hawlett and AJ Dowling. 1997. Agroforestry in the management of sloping lands in Asia and the Pacific. Agrofores Sys 38: 121-130.FAO [Food and Agriculture Organization]. 1993. Guidelines for Land Use Planning. FAO Development Series 1, FAO, Rome.FAO/IIASA [Food and Agriculture Organization/International Institute for Applied Systems Analysis]. 1991. Agro-Ecological Land Resources Assessment for Agricultural Development Planning; A Case Study of Kenya: Resource Database and Land Productivity. Main Report and 8 Technical Annexes. Rome, AGL-FAO. 9 vols. 1150 p. Gee GW and JW Bauder. 1986. Particle size analysis. In: A Klute (ed). Methods of soil Analysis, Part 1. Physical and mineralogical Methods, American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, pp. 399-404.Golden software. 2010. Surfer® 9 for windows. Golden, Colorado. Available online http://www.goldensoftware.com/products/surfer/surfer.shtml.Hammer WI. 1981. Second soil conservation consultant report AGOF/INS/78/006. Tech. Note No 10, Centre of Soil Research, Bogor.Irvem A, F Topaglu and V Uygur. 2007. Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol 336: 30-37.IITA [International Institute of Tropical Agriculture]. 1979. Selected Methods for Soils and Plant Analysis, Manual Series No. 1, IITA, Ibadan, Nigeria, pp. 70.Iwata T, S Nakano and M Inoue. 2003. Impact of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecol Appl 13: 461-473.Karyono. 1990. Home garden in Java: their structure and function. In: Lan-dauer K, M Brazil (eds). Tropical Home Garden, The United Nations University Press, Tokyo, pp. 138-146.Kravchenko A and DG Bullock. 1999. A comparative study of interpolation method for mapping soil properties. Agron J 91: 393-400.Kusumandari A and BR Mitchell. 1997. Soil erosion and sediment yield in forest and agroforestry areas in West Java, Indonesia. J Soil Water Cons 52: 376-380.Lee BD, RC Graham, TE Lauren, C Amrhen and RM Creasy. 2001: Spatial Distribution of Soil Chemical condition in a serpentinitic Wetland and Surrounding Landscape. Soil Sci Soc Am J 65: 1183-1196.Margareth and Arens. 1989. World Bank Environmental Department Working paper No.18. The World Bank, Washington, DC.Paranginangin N, R Sakthivadivel, NR Scoot, E Kendy and TS Steenhuis. 2004. Water accounting for conjunctive groundwater/surface water management: case of the Singkarak-Ombilin River basin, Indonesia. J Hydrol 292: 1-22.Reeve RC. 1965. Particle-size Analysis. In: CA Black, DD Evans, JL White, Ensminger and FE Clark (eds). Methods of Soil Analysis Part 1. Physical and Mineralogical Methods, American Society of Agronomy, Madison, Wisconsin, pp. 528-530. Sarainsong F, K Harashima, H Arifin, K Gandasasmita and K Sakamoto. 2007. Practical application of a land resources information system for agricultural landscape planning. Landscpe Urban Plan 79: 38-52.Schob A, J Schmidt and R Tenholtern. 2006. Derivation of site-related measures to minimize soil erosion on the watershed scale in the Saxonian loess belt using the model erosion 3D. Catena 68: 153-160.Shi ZH, CF Cai, SW Ding, TW Wang and TL Chow. 2004. Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena 55: 33-48.Soil Survey Staff. 1990. Keys to Soil Taxonomy. Washington, DC: USDA Natural Resources Conservation Service. Available online ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/1990_Keys_to_Soil_Taxonomy.pdf.Stevenson M and H Lee. 2001. Indicator of sustainability as a tool in agricultural development: portioning scientific and participatory processes. Int J Sustain Dev World Ecol 8: 57-56.Svoray T, P Bar and T Bannet. 2005. Urban land-use allocation in a Mediterranean ecotone: Habitat heterogeneity Model incorporated in a GIS using a multi-criteria mechanism. Landscape Urban Plan 72: 337-351.Takata Y, S Funukawa, J Yanai, A Mishima, K Akshalov, N Ishida and T Kosaki. 2008. Influence of crop rotation system on the spatial and temporal variation of the soil organic carbon budget in northern Kazakhstan. Soil Sci Plant Nutr, 54: 159-171.Wakatsuki T, Y Shinmura, E Otoo and GO Olaniyan. 1998. African-based paddy field system for the integrated watershed management of the small inland valley of West Africa. FAO Water Report no. 17. pp. 5-79.Wischmeier WH and DD Smith. 1978. Predicting rainfall erosion losses: a guide to conservation farming, USDA Handbook: No. 537 US Department of Agriculture, Washington, DC pp 1-58.World Bank. 1989. World Bank Technical Paper Number 127. In: Doolette JB and WB Magrath (eds). Watershed Development in Asia. Strategies and Technologies Available online: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/1999/09/17/000178830_98101904135527/Rendered/INDEX/multi_page.txt.Zhang Y, H Yang, M Du, X Tang, H Zhang and B Peng. 2003. Soil erosion study on hillside in Southern Jiangsu province the cesium-137 tracer technique. Soil Sci Plant Nutr 49: 85-92.
Faktor-faktor yang Memengaruhi Minat Generasi Muda terhadap Sektor Pertanian: Literature Review Sitanggang, Andreas; Alfi, Hendra; Syafri, Edi
Mimbar Agribisnis : Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis Vol 11, No 2 (2025): Juli 2025
Publisher : Universitas Galuh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25157/ma.v11i2.17747

Abstract

Human resources in the agricultural sector are faced with the problem of an aging workforce not accompanied by workforce regeneration. This problem is caused by the low interest of the younger generation to participate in the agricultural sector where various factors influence this interest. This study aims to provide an overview of the factors that influence the interest of the younger generation in the agricultural sector. This study was conducted using a descriptive approach with secondary data obtained from research articles related to the interest of the younger generation in the agricultural sector, as well as other supporting data. The data analysis used in this study is interactive analysis and bibliometric analysis. The results of the study show that the interest of the younger generation (<25 years) in the agricultural sector has been very low for the past few years (<10%), with the largest level of education of the workforce in the agricultural sector dominated by low education (>60%). The results of the bibliometric analysis of 34 articles related to the interest of the younger generation in the agricultural sector showed 11 influencing factors. The eleven factors are grouped into 2 clusters, namely cluster A consisting of 7 factors (age, education, experience, gender, income, land area, and parents), while cluster B consists of 4 factors (external factors, motivation, perception, and technology). There are three very dominant factors that influence the interest of the younger generation in the agricultural sector, namely income, education, and age.