Claim Missing Document
Check
Articles

Found 2 Documents
Search

Torsional Stiffness Improvement of Truck Chassis Using Finite Elemen Method Kurdi, Ojo; Rahman, Roslan Abdul; Samin, Pakharudin Mohd; Yob, Mohd Shukri; Nadarajan, Nantha Kumar; Yulianti, Ian
ROTASI Vol 19, No 2 (2017): VOLUME 19, NOMOR 2, APRIL 2017
Publisher : Departemen Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (542.176 KB) | DOI: 10.14710/rotasi.19.2.76-81

Abstract

This thesis deals with a study on the torsional stiffness of existing truck chassis and some others improved models by using finite element method. The objective of this study is to improve the torsional stiffness by design and to provide simulation of the deflection on the chassis. The problem on the chassis is the deflection on the chassis whereas  higher  displacement  will  affect  the  torsional  stiffness  of  the  truck. ABAQUS was used as it is a powerful engineering simulation tool based on the finite element method. The magnitude of torsional stiffness for existing and modified models were calculated based on data of deflection of each models which were obtained from the finite element simulation. The multi holes model was choosen as the best proposed model due to the highest of torsional stffness as comparison result among existing and modified models.
Test rig development for load test of pipe saddle support Rayhan, Muhammad Arif; Yob, Mohd Shukri; Latif, Mohd Juzaila Abd; Kurdi, Ojo; Munir, Fudhail Abdul
International Journal of Advances in Applied Sciences Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v14.i3.pp886-893

Abstract

Pipe saddle support is a structure commonly used to support horizontal steel pipe. It prevents direct contact between the pipe and the support. Pipe saddle support can experience displacement due to pipe movement and insufficient stress analysis. Given these concerns, conducting a load test is essential to determine the stress on pipe saddle supports. However, a universal testing machine (UTM) is not suitable for this purpose due to the size limitation. Therefore, this study proposed a test rig setup for the pipe saddle support load test. The test rig consists of a portal frame secured by an underground locking system featuring a strong floor. Additionally, an actual pipe is utilized to replicate actual loading conditions on the pipe saddle support. The applied load is measured using a load cell, with a custom-designed bracket to ensure precise load transfer. Finally, the pipe saddle support specimen is bolted to a base support to maintain stability during the load test. Stress analysis using finite element analysis (FEA) demonstrated that the test rig is suitable for conducting load tests on the specimens with a maximum force of 80 kN. FEA confirmed that the test rig operates within a safety factor of 1.3.