Claim Missing Document
Check
Articles

Found 14 Documents
Search

Effect of Fibres Length on Acoustic Properties of Betel Nut Husk (Areca Nut Husk) Fibers–Reinforced Epoxy Composites Putri Pratiwi; Hendriwan Fahmi; Georgery Saputra
Jurnal Teknik Mesin Vol 9 No 2 (2019): Jurnal Teknik Mesin Vol.9 No.2 October 2019
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat (LP2M) - ITP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21063/jtm.2019.v9.i2.46-51

Abstract

The objective of this research is to determine the acoustic properties (sound absorption coefficient) in a various length of betelnut fibers. Betel nut fibers were obtain from local plantation in Padang as agro waste material and potentially used as sound absorber. In this study, we used betel nut fibers as a filler of composites and epoxy resin as a matrix using the ratio of volume fraction of 40% : 60%. We used three variations of fibers length such as 1 cm, 2 cm and 3 cm. The sound absorption coefficient of composites was studied using impedance tube method with 1000 Hz, 1500 Hz, 2000 Hz, and 2500 Hz frequency. The results showed that composite using 3 cm fibers length of betelnut husk would give the optimum sound absorption coefficient at 1500 Hz frequency, but composites with 1 cm fibers length showed a great performance as sound absorbing materials at various sound frequencies that have been tested. From this research shown that betelnut fiber composite give the optimum sound absorption coefficient at various fibres length and can be used as sound absorption materials, based on ISO standard 11654:1997.
Toughness and Fracture Surface of Frame of Drone Based on Composite from Waste Materials Mastariyanto Perdana; Rozi Saferi; Putri Pratiwi
Jurnal Teknik Mesin Vol 9 No 2 (2019): Jurnal Teknik Mesin Vol.9 No.2 October 2019
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat (LP2M) - ITP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21063/jtm.2019.v9.i2.52-58

Abstract

Application of green composites material is aerial egineering. Advantages of green composites material are lightweight and relatively strong. This reason that makes green composites can be applied in Unmanned Aerial Vehicle (UAV). In this study, material of quadcopter frame was composites material that made of waste material from styrofoam, bagasse and eggshell. Styrofoam was used as binder of composite material. Bagasse and eggshell were used as reinforcement in green composite material. The investigation focused on effect of volume fraction on flying time of quadcopter that made of green composites material. This study showed that addition of eggshell powder in composites up 25% by volume fraction, result in decreasing the flying time of quadcopter. Addition of eggshell powder in composites up 25% by volume fraction, result in decreasing the porous of green composite. Porous structure affect the flying time of quadcopter based on green composite materials that made of waste material from styrofoam, bagasse and eggshell. Green composite based on styrofoam, bagasse and eggshell can be applied in Unmanned Aerial Vehicle (UAV) materials.
Design and Performance Horizontal Axis Wind Turbine Taper Type Arfidian Rachman; Putri Pratiwi; Lucky Ashari
Jurnal Teknik Mesin Vol 9 No 2 (2019): Jurnal Teknik Mesin Vol.9 No.2 October 2019
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat (LP2M) - ITP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21063/jtm.2019.v9.i2.59-64

Abstract

The potential of wind energy in Indonesia is sufficient for the development of renewable energy based on wind turbine, because the average wind speed ranges from 3-12 m / s. The wind that blows is dominated by West, Southwest, and Northwest winds with speeds sometimes reaching 2.5 m / s to 20 m / s. The designed wind turbine is a Taper type blade where the comparison of the tip chord to the base is 1.3: 1, with a blade length of 1 m. Where the blades are designed to be able to spin in high-speed winds and to maximize the efficiency that can be obtained. The design result that the highest peak is 59% at TSR 7 and the blades start to spin in winds of 8.7 m / s and at winds of 12 m / s the power produced reaches 3255 watts.
Performance Comparison of Wet Cell HHO Generator with Galvanized Steel and Stainless Steel Electrodes Putri Pratiwi; Mastariyanto Perdana; Ahmad Fachrurrozi
Jurnal Teknik Mesin Vol 11 No 2 (2021): Jurnal Teknik Mesin Vol.11 No.2 October 2021
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat (LP2M) - ITP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21063/jtm.2021.v11.i2.172-178

Abstract

The excessive use of fossil fuels has many negative impacts on the environment and health. Many studies have been conducted to find solutions to this problem, such as the use of oxy-hydrogen gas (HHO) as an alternative to reduce the use of fossil fuels as a source of energy in vehicles and other applications. The objective of this research is to compare the performance of a wet type HHO generator using two types of electrodes, stainless steel plate and galvanized steel plate. Both generators use nine electrodes with dimensions of 130 mm x 60 mm consisting of two plates at the positive pole (anode), one plate at the negative pole (cathode), and six neutral plates. Calculation of the power consumed by the HHO generators, the flow rate of the gas produced, and the efficiency of these generators are carried out to compare the performance of both HHO generators. The results showed that the performance of the HHO generator using stainless steel plate as an electrode was better than galvanized steel which was indicated by a higher efficiency value.