Claim Missing Document
Check
Articles

Found 12 Documents
Search

PEMODELAN REGRESI HURDLE POISSON UNTUK KASUS PENYAKIT TETANUS NEONATORUM PADA NEONATAL DI KALIMANTAN BARAT Beatrice Beatrice; Naomi Nessyana Debataraja; Nurfitri Imro’ah
Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 11, No 4 (2022): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v11i4.57011

Abstract

Data dari kasus penyakit Tetanus Neonatorum merupakan data diskrit berdistribusi Poisson. Variabel indikator yang diduga mempengaruhi terjadinya penyakit Tetanus Neonatorum dapat dianalisis menggunakan metode regresi Poisson. Model regresi Poisson terdapat asumsi equidispersi yaitu rata-rata sama dengan varian. Banyak kasus yang melanggar asumsi equidispersi yaitu disaat varian lebih besar dari rata-rata (overdispersion) atau varian lebih kecil dari rata-rata (underdispersion). Pada penelitian ini ditemukan banyaknya nilai nol (excess zeros) pada variabel dependen. Hal ini merupakan salah satu penyebab terjadinya overdispersi. Analisis yang digunakan untuk mengatasi masalah overdispersi akibat excess zeros adalah regresi Hurdle Poisson. Tujuan dari penelitian ini adalah untuk menganalisis model regresi Hurdle Poisson dan varabel indikator apa saja yang mempengaruhi terjadinya kasus penyakit Tetanus Neonatorum pada neonatal di Kalimantan Barat. Hasil penelitian menunjukkan bahwa jumlah persentase persalinan ditolong oleh tenaga kesehatan () dan persentase ibu hamil melaksanakan program K4 () berpengaruh signifikan terhadap jumlah kasus penyakit Tetanus Neonatorum di Kalimantan Barat tahun 2019 dengan koefisien determinasi (adjusted R Square) sebesar 81,8%. Kata Kunci: Excess zeros, Regresi Hurdle Poisson, Tetanus Neonatorum
Application of Geographically Weighted Regression for Modeling the Poverty Cases in Kalimantan, Indonesia Noerul Hanin; Irvan Meilandra; Naomi Nessyana Debataraja; Retno Pertiwi
Jurnal Statistika dan Aplikasinya Vol 8 No 1 (2024): Jurnal Statistika dan Aplikasinya
Publisher : Program Studi Statistika FMIPA UNJ

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/JSA.08101

Abstract

Poverty is one of the most global issues that remains a concern worldwide, including in Indonesia. Indonesia is among the top 100 poorest countries in the world, ranked 73rd, to be exact. Government wants to decrease the national poverty rate, as outlined in the 2021-2024 National Medium-Term Development Plan, with the expected percentage of poor people in Indonesia on 2024 being 6.5 to 7 percent. Unfortunately, the hope for a reduction in the poverty rate has not been achieved in several regions, such as in 4 out of 5 provinces in Kalimantan. Therefore, the analyzing factors causing poverty in the Kalimantan region is conducted using the Geographically Weighted Regression method in order to give clearly information for government to decrease the poor rate in this region. GWR (Geographically Weighted Regression) is an extension of the regression method. The equation parameters for each observation location differ from one location to another. The weighting function used were fixed gaussian, fixed bisquare, fixed tricube, adaptive gaussian, adaptive bisquare, and adaptive tricube. Based on R2 and AIC value, the best model is the model with fixed tricube function. The R2 score is 0.8952, while the AIC score is 155.83. The GWR model is better than OLS or global regression model. Thus, spatial analysis to see the factors affecting the percentage of poor people in each regency and city in Kalimantan, Indonesia has been successfully carried out.