Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : KUBIK: Jurnal Publikasi Ilmiah Matematika

Analisis Dinamik Pada Model Penyebaran Penyakit Campak dengan Pengaruh Vaksin Permanen Dani Suandi
KUBIK Vol 2, No 2 (2017): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v2i2.1854

Abstract

Penyakit campak merupakan penyakit menular yang disebabkan oleh virus golongan Paramixovirus. Kasus campak di Indonesia sering terjadi meskipun telah berhasil direduksi dari angka kejadian 180.000 kasus pada tahun 1990 menjadi sekitar 20.000 kasus pada tahun 2010. Pemberian vaksin campak kepada balita dan anak usia sekolah dasar merupakan salah satu program pemerintah dalam mencegah dan menanggulangi kenaikan angka kejadian penyakit campak. Pada paper ini dikembangkan model matematika untuk penyebaran penyakit campak. Model merupakan sistem dinamik non linear empat dimensi yang menggambarkan pengaruh vaksin permanen terhadap penyebaran penyakit campak. Metode Routh Hurwith digunakan untuk menganalisis kestabilan dari titik ekulibrium endemik. Kita menggunakan basic roproduction number untuk menganlisis keendemikan penyakit yang diperoleh dengan metode next generation matrix. Hasil Analisis dan Simulasi numerik memberikan informasi bahwa laju vaksinasi permanen berpengaruh sangat significant terhadap penurunan populasi manusia yang terinveksi penyakit campak.
Analisis Kestabilan Global dengan Menggunakan Fungsi Lyapunov pada Model Dinamik Epidemik SIR Nurjanah, Lisna; Ilahi, Fadilah; Suandi, Dani
KUBIK Vol 3, No 1 (2018): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v3i1.2733

Abstract

Artikel ini menganalisis kestabilan global dengan menggunakan fungsi Lyapunov pada model dinamik epidemik SIR. Populasi manusia diasumsikan menjadi tiga bagian yaitu individu rentan (susceptible), terinfeksi (infected) dan kebal (recovered). Titik tetap terdiri dari titik tetap bebas penyakit dan endemik. Kestabilan yang dikaji berupa kestabilan global dari titik tetap bebas penyakit dan endemik menggunakan fungsi Lyapunov. Berdasarkan hasil analisis, pada titik tetap bebas penyakit dapat disimpulkan bahwa titik tersebut bersifat stabil asimtot global jika . Sedangkan pada titik tetap endemik dapat disimpulkan bersifat stabil global karena  definit positif dan turunan fungsi tersebut  semi definit negatif.
Analisis Kestabilan Ekuilibrium dan Eksistensi Solusi Periodik Pada Model Mangsa Pemangsa Dengan Penyebaran Penyakit Suandi, Dani; ilahi, Fadilah; Utami, Erna Putri
KUBIK Vol 4, No 2 (2019): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v4i2.6430

Abstract

Model matematika mangsa pemangsa (predator-prey) dimodifikasi pada artikel ini. Modifikasi dilakukan dengan melibatkan penyebaran penyakit dan tingkat kekebalan pada kompartemen pemangsa. Analisis kestabilan lokal dilakukan dengan melihat nilai eigen dari matriks Jacobi. Sementara itu, Kriteria Dulac-Bendicson digunakan sebagai metode dalam menganalisis eksistensi solusi periodik. Berdasarkan hasil analisis, solusi periodik dapat terjadi pada model tersebut. Simulasi numerik disajikan sebagai konfirmasi dari hasil analisis.