Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Communication in Biomathematical Sciences

On the Reproduction Ratio of Dengue Incidence in Semarang, Indonesia 2015-2018 Puspita, Juni Wijayanti; Fakhruddin, Muhammad; Fahlena, Hilda; Rohim, Fatkhur; Sutimin, Sutimin
Communication in Biomathematical Sciences Vol 2, No 2 (2019)
Publisher : Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/cbms.2019.2.2.5

Abstract

Dengue is one of the mosquito-borne diseases caused by dengue viruses (DENV), which has become endemic in most tropical and subtropical countries, including Indonesia. Since there is a lot of dengue incidence on children of age less than fourteen years old in Semarang, Indonesia, it is the interest here to analyze the different rates of infection among different age groups. A SIR-UV mathematical model with age structure in human the population is constructed to describe dengue transmission in Semarang from 2015 to 2018. In this study, we separated the human population into four age classes: children (0-4 years), youngster (5-14 years), productive adults (15-60 years) and non-productive adults (over 60 years). We use Particle Swarm  Optimization to obtain optimal parameters for the transmission rates based on the yearly incidence. The basic reproduction ratio (R0) is derived from the Next Generation Matrix and is evaluated by using the optimal parameters for data Semarang in 2015-2018. Numerical simulation results show that the number of dengue incidence is in a good agreement with the actual data in Semarang for 2015-2018.
Mathematical Model of an Interaction between Bears and Salmon; A Case in British Columbia Fahlena, Hilda; Sahetapy-Engel, Jane T. M.; Ramadhanty, Azhary; Sutanto, Dancent; Wijaya, Eduardus Axel; Winarni, Ambar
Communication in Biomathematical Sciences Vol 2, No 1 (2019)
Publisher : Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (523.412 KB) | DOI: 10.5614/cbms.2019.2.1.4

Abstract

An interaction model for the Pacific salmon and bear population in British Columbia is discussed here. The phenomenon is shown during the salmons period of migration back to their birthplace river at the end of their life. During this returning home, a large number of bears from the nearby state come and prey on them. This predation of salmon before spawning is suspected as the cause of the decline in Salmon production. Here a dynamical model involving a specific predator-prey type interaction between Salmon and Bears is constructed in the form of a non-autonomous dynamical system, in which the transition rate from the adult state of salmon to the spawning state is positive only in the month of migration. Dynamical analysis for the stability of the coexistence equilibrium for the autonomous case is shown and sensitivity analysis for the non-autonomous the case is done numerically.
Mathematical Model of an Interaction between Bears and Salmon; A Case in British Columbia Hilda Fahlena; Jane T. M. Sahetapy-Engel; Azhary Ramadhanty; Dancent Sutanto; Eduardus Axel Wijaya; Ambar Winarni
Communication in Biomathematical Sciences Vol. 2 No. 1 (2019)
Publisher : Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/cbms.2019.2.1.4

Abstract

An interaction model for the Pacific salmon and bear population in British Columbia is discussed here. The phenomenon is shown during the salmons period of migration back to their birthplace river at the end of their life. During this returning home, a large number of bears from the nearby state come and prey on them. This predation of salmon before spawning is suspected as the cause of the decline in Salmon production. Here a dynamical model involving a specific predator-prey type interaction between Salmon and Bears is constructed in the form of a non-autonomous dynamical system, in which the transition rate from the adult state of salmon to the spawning state is positive only in the month of migration. Dynamical analysis for the stability of the coexistence equilibrium for the autonomous case is shown and sensitivity analysis for the non-autonomous the case is done numerically.
On the Reproduction Ratio of Dengue Incidence in Semarang, Indonesia 2015-2018 Juni Wijayanti Puspita; Muhammad Fakhruddin; Hilda Fahlena; Fatkhur Rohim; Sutimin Sutimin
Communication in Biomathematical Sciences Vol. 2 No. 2 (2019)
Publisher : Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/cbms.2019.2.2.5

Abstract

Dengue is one of the mosquito-borne diseases caused by dengue viruses (DENV), which has become endemic in most tropical and subtropical countries, including Indonesia. Since there is a lot of dengue incidence on children of age less than fourteen years old in Semarang, Indonesia, it is the interest here to analyze the different rates of infection among different age groups. A SIR-UV mathematical model with age structure in human the population is constructed to describe dengue transmission in Semarang from 2015 to 2018. In this study, we separated the human population into four age classes: children (0-4 years), youngster (5-14 years), productive adults (15-60 years) and non-productive adults (over 60 years). We use Particle Swarm  Optimization to obtain optimal parameters for the transmission rates based on the yearly incidence. The basic reproduction ratio (R0) is derived from the Next Generation Matrix and is evaluated by using the optimal parameters for data Semarang in 2015-2018. Numerical simulation results show that the number of dengue incidence is in a good agreement with the actual data in Semarang for 2015-2018.
Analysis of A Coendemic Model of COVID-19 and Dengue Disease Hilda Fahlena; Widya Oktaviana; Farida; Sudirman; Nuning Nuraini; Edy Soewono
Communication in Biomathematical Sciences Vol. 4 No. 2 (2021)
Publisher : Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/cbms.2021.4.2.5

Abstract

The coronavirus disease 2019 (COVID-19) pandemic continues to spread aggressively worldwide, infecting more than 170 million people with confirmed cases, including more than 3 million deaths. This pandemic is increasingly exacerbating the burden on tropical and subtropical regions of the world due to the pre-existing dengue fever, which has become endemic for a longer period in the same region. Co-circulation dengue and COVID-19 cases have been found and confirmed in several countries. In this paper, a deterministic model for the coendemic of COVID-19 and dengue is proposed. The basic reproduction ratio is obtained, which is related to the four equilibria, disease-free, endemic-COVID-19, endemic-dengue, and coendemic equilibria. Stability analysis is done for the first three equilibria. Furthermore, a condition for coexistence equilibrium is obtained, which gives a condition for bifurcation analysis. Numerical simulations were carried out to obtain a stable limit-cycle resulting from two Hopf bifurcation points with dengue transmission rate and COVID-19 transmission rate as the bifurcation parameter, representing a stable periodic coexistence of dengue and COVID-19 transmission. We identify the period of limit cycle decreases after reaching the maximum value.