Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Perbandingan Kinerja Algoritma Klasifikasi dalam Mendeteksi Penyakit Jantung Prabowo, Abram Setyo; Kurniadi, Felix Indra
Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan) Vol. 7 No. 1 (2023): Volume VII - Nomor 1 - September 2023
Publisher : Teknik Informatika, Sistem Informasi dan Teknik Elektro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47970/siskom-kb.v7i1.468

Abstract

Abstract— Deteksi penyakit jantung secara dini dan akurat memiliki dampak signifikan terhadap prognosis pasien serta mengurangi beban penyakit secara keseluruhan. Dalam upaya meningkatkan efektivitas deteksi penyakit jantung, teknik pembelajaran mesin dan algoritma klasifikasi telah muncul sebagai alat yang berpotensi ampuh dalam mendiagnosis kondisi ini dengan tingkat akurasi yang tinggi. Penelitian ini bertujuan untuk memprediksi penyakit jantung dengan menggunakan perbandingan Support Vector Machine (SVM), Random Forest, Logistic Regression, dan AdaBoost. Pada penelitian ini algoritma Random Forest mempunyai model base score untuk training test dengan nilai 1, nilai tersebut merupakan nilai terbaik dibandingkan dengan 3 algoritma yang diusulkan pada penelitian ini. Selama pengujian, hasil yang diperoleh adalah algoritma random forest, SVM, dan AdaBoost merupakan algoritma yang mempunyai nilai terbaik dan nilai yang sama pada hasil pengujian. Untuk nilai akurasi 0.985366, presisi 0.985714, recall 0.985437, dan f1-score 0.985364.. Keywords — Heart Disease, Machine Learning, SVM, AdaBoost, Random Forest, Linear Regression
Sampling methods in handling imbalanced data for Indonesia health insurance dataset Kurniadi, Felix Indra; Purwandari, Kartika; Wulandari, Ajeng; Permai, Syarifah Diana
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i1.pp348-357

Abstract

Health insurance fraud is one of the most frequently occurring fraudulent acts and has become a concern for every insurance. According to data from The Indonesian General Insurance Association or Asosiasi Asuransi Umum Indonesia (AAUI), the private insurance industry suffered losses up to billions rupiah throughout 2018 due to the fraudulent acts commited by the perpetrators. The problem in with the number of frauds in Indonesia is that the current system is highly vulnerable and they is still done manually. The other problem from this detection is imbalance data which often occurs in fraudulent cases. In this research, we used a sampling methods using several machine learning as the baseline. The result shows that the instance hardness thresholding algorithm and extreme gradient boosting gives the best performance for all the case. It shows the method can reduced the bias and can achieve better generalization.