Lubis, Anju Eliarsyam
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

IMPLEMENTASI DATA MINING DALAM PENJUALAN SEPEDA MOTOR SUZUKI PADA SEJAHTERA MOTOR GEMILANG DENGAN METODE ALGORITMA APRIORI Lubis, Anju Eliarsyam
Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI) Vol. 1 No. 1 (2018): Jurnal Ilmu Komputer dan Sistem Informasi
Publisher : Sisfokomtek

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penjualan merupakan bagian dari pemasaran yang menentukan kelangsungan hidup perusahaan. Denganadanya penjualan, perusahaan dapat mencapai tujuan atau target. Untuk menjadi perusahaan yang terusberkembang di dalam penjualan sepeda motor, perusahaan harus mampu bersaing dalam meningkatkan volumepenjualan. Mulai dari meluncurkan prodak yang terbaik dalam kecanggihan sepeda motor, hingga potonganharga yang sangat menarik perhatian konsumen. Hal-hal seperti itu sudah sanggat sering dilakukan, sehinggaperusahaan tetap bisa bersaing, Sepeda motor adalah alat transfortasi roda dua yang lebih banyak digunakanorang umum. Mulai remaja hingga orag tua, tak jarang sepeda motor termasuk kebutuhan yang sanggat penting.Jika kita tidak memilikinya terasa amat sulit dalam melakukan aktifitas secara cepat. Tanpa ada batasanpenjualan menjadikan data penjualan semakin menumpuk, hingga akhirnya perusahaan kewalahan dalam halmengurus berkas nasabah. Untuk mengetahui penjualan terbanyak diperlukan Algoritma Apriori. AlgoritmaApriori, termasuk jenis aturan assosiasi pada Data Mining. Salah satu tahap assosiasi yang dapat menghasilkanalgoritma yang efisien adalah dengan analisis pola frekuensi tinggi. Dalam suatu assosiasi dapat diketahuidengan cara dua tolak ukur, yaitu : Support dan Confidence. Support “nilai penunang” merupakan persentasekombinasi item dalam sebuah Database, dan Confidence “nilai kepastian” ialah kuatnya hubungan antara itemdalam sebuah aturan asosiasi tersebut.
Implementation Of Data Mining On Suzuki Motorcycle Sales In Gemilang Motor Prosperous With Apriori Algorithm Method Lubis, Anju Eliarsyam; Hasugian, Paska Marto
Journal of Computer Networks, Architecture and High Performance Computing Vol. 2 No. 1 (2020): Computer Networks, Architecture and High Performance Computing
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnapc.v2i1.353

Abstract

The sale is part of the marketing that determine the survival of the company. With the sale, the company can achieve the goals or targets. To be a company that continues to grow in motorcycle sales, the company should be able to compete in increasing sales volume. Starting from the launch prodak the best in sophistication motorcycles, up to a very attractive price cuts the attention of consumers. Things like that already sanggat often do, so the company can still compete, Motorcycles is a two-wheeled transfortasi tool used more and more common people. From teenagers to old orag, not infrequently motorcycle including important sanggat needs. If we do not have it feels very hard in activity quickly. Make sales without any restriction of sales data accumulate, until finally overwhelmed the company in terms of taking care of customer files. To find the most sales required Apriori Algorithm. Apriori algorithm, including the type of association rules on Data Mining. One stage of association that can produce an efficient algorithm is with high frequency pattern analysis. In an association can be determined by two benchmarks, namely: Support and Confidence. Support "penunang value" is the percentage of combinations of items in a database, and Confidence "value certainty" is strong correlation between the items in an association's rules. Apriori algorithm, including the type of association rules on Data Mining. One stage of association that can produce an efficient algorithm is with high frequency pattern analysis. In an association can be determined by two benchmarks, namely: Support and Confidence. Support "penunang value" is the percentage of combinations of items in a database, and Confidence "value certainty" is strong correlation between the items in an association's rules. Apriori algorithm, including the type of association rules on Data Mining. One stage of association that can produce an efficient algorithm is with high frequency pattern analysis. In an association can be determined by two benchmarks, namely: Support and Confidence. Support "penunang value" is the percentage of combinations of items in a database, and Confidence "value certainty" is strong correlation between the items in an association's rules.