Claim Missing Document
Check
Articles

Found 5 Documents
Search

Electric Load Controller Untuk Pembangkit Listrik Tenaga Mikro Hidro Ardianto , Mukhlas; Pratilastiarso, Joke; Permatasari , Prima Dewi
Prosiding SENTIKUIN (Seminar Nasional Teknologi Industri, Lingkungan dan Infrastruktur) Vol 2 (2019): PROSIDING SENTIKUIN
Publisher : Fakultas Teknik Universitas Tribhuwana Tunggadewi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (639.848 KB)

Abstract

In implementation, PLTMH utilizes different head heights so that the potential energy of water is converted into mechanical energy to turn turbines. Then the generator will convert mechanical energy from the turbine shaft rotation into electrical energy. In the operation of PLTMH, fluctuating loads cause unstable frequencies and voltages that can damage electrical equipment and cause overspeed generators when the load is very low. To regulate fluctuating loads on modern PLTMH using ELC (Electric Load Controller). The working principle of the ELC is to control the load which aims to balance the power generated by the generator with the power used by consumers. The results of the simulation conducted by a generator with 30 VA power require an excitation voltage of 52.2 V dc, the dc voltage of the buck converter is capable of producing an output of 52.2 V with a duty cycle value of 0.725%. Changes in consumer loads cause the value of the generator voltage to increase, namely loading from a scale of 11-30 KW with a voltage reading of 220-235 V line-neutral. The decrease in consumer load results in the power transferred to the ballast load being greater, namely alpha angle variation from 0o - 180o. A decrease in consumer load from a scale of 11-30 KW results in the power being transferred to ballast loads from 0 KW - 30 KW. ELC is able to maintain line-neutral voltage on the 220 V set point and has 100% accuracy. The ELC simulation results are able to maintain a 220 V set point voltage with a power capacity generated by a 30 VA generator.
Studi Numerik Pengaruh Geometri Dasar Laut Berbentuk Convex Terhadap Performa Hidrodinamis Oscillating Water Column (OWC) pada Gelombang Pendek Fadilah, Wahyu Nur; Junianto, Sony; Arini, Nu Rhahida; Pratilastiarso, Joke
ROTASI Vol 25, No 4 (2023): VOLUME 25, NOMOR 4, OKTOBER 2023
Publisher : Departemen Teknik Mesin, Fakultas Teknik, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/rotasi.25.4.53-59

Abstract

Lautan yang luas menyimpan potensi energi yang besar dalam gelombang laut, menjadi solusi potensial terhadap krisis bahan bakar fosil. Wave Energy Converters (WECs) memegang peranan penting dalam mengoptimalkan potensi ini, dengan Oscillating Water Column (OWC) menjadi perangkat yang paling menjanjikan dan memiliki konstruksi yang sederhana. Penelitian ini mengeksplorasi kompleksitas hidrodinamis OWC, dengan fokus pada pengaruh profil dasar berbentuk convex terhadap efisiensi penangkapan energi, terutama dalam menghadapi gelombang laut yang tidak teratur dan alami. Simulasi numerik dua dimensi (2D) digunakan untuk menganalisis performa hidrodinamis OWC pada frekuensi rendah atau gelombang pendek. Keunikan penelitian ini terletak pada variasi lebar radius convex, dengan nilai yang diuji adalah 1; 1.5; 2; 2.5; 3; dan 3.5 meter. Analisa numerik menunjukkan terdapat penurunan performa hidrodinamis yang cukup signifikan ketika lebar radius bernilai lebih dari 2.5 meter. Hasil studi ini merekomendasikan bahwa untuk mendapatkan performa hidrodinamis yang optimal dan lebih baik dibandingkan dengan profil dasar berbentuk datar, lebar radius convex sebaiknya tidak bernilai lebih dari 75% dari kedalaman air.
Numerical study the effect of inlet and outlet ventilation configurations for passive cooling air conditioning system Safitra, Arrad Ghani; Diana, Lohdy; Pratilastiarso, Joke; Hidayat, Nur
Journal of Mechanical Engineering, Science, and Innovation Vol 4, No 2 (2024): (October)
Publisher : Mechanical Engineering Department - Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jmesi.2024.v4i2.6659

Abstract

The application of Green Energy Technology through Passive Cooling System is the right solution. It aims to achieve energy savings and reduce CO2 emissions. This study focuses on the simulation of room conditions using the computational fluid method. The simulation aims to determine the effect of inlet and outlet configuration against the air condition in the room. The results presented in this simulation are the distribution of air temperature, air humidity, and air velocity. The variations used in the simulation are the air inlet and outlet positions, there are three configurations of air inlet and outlet positions. Variation 1: two inlets – one outlet, Variation 2: two inlets – two outlets, Variation 3: four inlets – three outlets. The results of the study show Variation 3 has the best design if cooling or heating equipment wants to be added, for example passive cooling in summer and a heater for cold weather. On other hand, Variation 1 is the most effective in maintaining the stability of humidity distribution and air velocity within the room. This configuration successfully creates optimal ventilation by generating efficient natural convection without significant fluctuations, achieved using two inlets and one active outlet
The Experimental Study of the Lens Wind Turbine Performance with Vortex Generator Diana, Lohdy; Pratilastiarso, Joke; Safitra, Arrad Ghani; Arini, Nu Rhahida; Saputra, Firman Yunan; Syahputra, Ar Rayyan Ikhsan; Putra, Firdaus Fhudoli
invotek Vol 24 No 3 (2024): INVOTEK: Jurnal Inovasi Vokasional dan Teknologi
Publisher : Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/invotek.v24i3.1237

Abstract

Wind energy potential is available in several regions in Indonesia with wind ranges reaching 5 m/s. Wind turbine research continues to develop to produce optimal power. The aim of this research is to determine the performance of wind turbines equipped with diffusers or lens that put triangle fin vortex generator on lens’s surface. The turbine blade used Clark-Y that has a winglet angle of 45-degrees. There are three variations of lens wind turbine that were tested: without vortex generator, z/h=4.5, z/h=2.5, z/h=0.5. The research was carried out experimentally with fifth wind velocity 3 m/s, 3.5 m/s, 4 m/s, 4.5 m/s, and 5 m/s. The results analyzed to determine turbine performance are turbine rotation, the power produced due to wind direction. Based on the results of the experiments that have been carried out, the results were obtained a straight comparison between TSR and wind turbine rotation (rpm), and straight comparison between Cp and TRS. The Cp is largest in a lens wind turbine with a vortex generator z/h=0.5, which is 0.59 and has the highest power output of 473 watt.
Impact of Embedded Pipe Configuration in Phase Change Material on Photovoltaic Cooling Diana, Lohdy; Aziz, Abdul; Safitra, Arrad Ghani; Pratilastiarso, Joke; Kusumawati, Eny
Journal of Mechanical Engineering, Science, and Innovation Vol 5, No 2 (2025): (October)
Publisher : Mechanical Engineering Department - Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jmesi.2025.v5i2.8177

Abstract

The photovoltaic as a solar power plant is increasingly widespread as renewable energy. However, high photovoltaic surface temperatures can reduce performance in generating electricity. Based on these problems, a photovoltaic cooling system is needed. This research aims to produce effective photovoltaic cooling by planting pipes that carry cold fluid embedded in Phase Change Material. The experimental research used solar simulator, there are three variations of pipe configuration, including: parallel, serpentine, and circular. The photovoltaic used in this research has a specification of 50WP. This study examines the effect of various cooling pipe configurations on thermal performance, output power, and the reduction of photovoltaic temperature. The results show the serpentine pipe configuration exhibits the highest thermal efficiency initially but declines drastically over time, while the circular pipe design demonstrates the best long-term stability and efficiency. Specifically, the circular pipe variation effectively reduces the photovoltaic surface temperature, maintaining the lowest temperature of around 42°C at the 80th minute, compared to higher peak temperatures in the unmodified variation 67°C, serpentine 50°C, and parallel 45°C. Overall, the circular pipe design is identified as the most effective cooling method for maintaining low surface temperatures and ensuring stable performance in photovoltaic panels.