Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS KINERJA SISTEM PV MIKROGRID 80 kWp (STUDI KASUS : PT. LEN INDUSTRI) Nurliyanti, Vetri; Pandin, Marlina; Rasyid, Harun Al
Ketenagalistrikan dan Energi Terbarukan Vol 11, No 2 (2012): KETENAGALISTRIKAN DAN ENERGI TERBARUKAN
Publisher : P3TKEBTKE

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Suatu sistem PV mikrogrid kapasitas 80 kWp telah di pasang di PT. LEN Industri sebagai sistem percontohan untuk aplikasi di industri. Sistem ini dirancang untuk menjaga kestabilan suplai daya listrik ke beban penting saat terjadi gangguan tegangan atau pemadaman listrik dari jaringan utama / PLN. Penelitian ini dilakukan untuk mengetahui efisiensi sistem, rasio kinerja, kontribusi energi, dan faktor-faktor kegagalan yang mempengaruhi kinerja sistem selama beroperasi. Berdasarkan data yang dikumpulkan selama tahun 2011, sistem PV mikrogrid tidak beroperasi dengan baik. Hasil analisa menunjukkan bahwa kinerja sistem PV mikrogrid tersebut sangat rendah dimana efisiensi sistem dan rasio kinerja rata-rata berturut-turut adalah 3,5% dan 26,3%. Sistem PV mikrogrid yang memiliki kinerja bagus akan mampu mencapai nilai rasio kinerja di atas 80%. Selain itu kontribusi energi sistem PV mikrogrid hanya sebesar 1,4% dari total konsumsi energi PT. LEN Industri. Rendahnya kinerja sistem PV mikrogrid ini disebabkan karena beberapa faktor yang menyebabkan kegagalan operasional sistem, seperti: kegagalan penyamaan muatan baterai, malfungsi salah satu PV inverter low harmonic dan konfigurasi sistem saat tidak menggunakan baterai/inverter baterai. An 80 kW microgrid photovoltaic (PV) system has been installed at PT. LEN Industri for demonstration purposes. The system is designed to continuously supply stable power to define important loads when a voltage dip or a power system fault occurs on the PLN grid. This research is carried out to study the efficiency of the system, performance ratio, energy contribution and failure factors that affect the performance of Microgrid PV System during operation. Based on the one year data collected in 2011, the microgrid PV system performance is not good in operation. From the analysis it is shown that average efficiency and performance ratio are 3.5% and 26.3% respectively, while good performance microgrid PV system shall achieve performance ratio above 80%. Moreover, energy that contributes into total energy consumption at PT. LEN is only 1.4%. This low performance is due to some failure factors, such as: battery equalizing charge failures, malfunction of one of low harmonic PV inverter, and battery inverter non-used mode.
A systematic decision-making approach to optimizing microgrid energy sources in rural areas through diesel generator operation and techno-economic analysis: A case study of Baron Technopark in Indonesia Prawitasari, Adinda; Nurliyanti, Vetri; Putri Utami, Dannya Maharani; Nurdiana, Eka; Akhmad, Kholid; Aji, Prasetyo; Syafei, Suhraeni; Ifanda, Ifanda; Mulyana, Iwa Garniwa
International Journal of Renewable Energy Development Vol 13, No 2 (2024): March 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.59560

Abstract

Microgrid systems are part of the most reliable energy supply technologies for rural communities that do not have access to electricity but the system is generally dominated by diesel generators (DG). The implementation of de-dieselization programs to ensure efficient diesel operations requires addressing several scenarios such as the replacement of diesel completely with 100% renewable energy sources at a significant cost. The design and selection of appropriate configuration, as well as operating patterns, need to be considered in adopting economical and reliable microgrid systems. Therefore, this study aimed to design an optimal configuration and operational pattern for microgrid systems for the frontier, outermost, and least developed (3T) regions using Baron Techno Park (BTP) in Indonesia as a case study. The optimization was conducted through HOMER software combined with benefit-cost analysis and the focus was on daily load variations, selection of control algorithms, reconfiguration of the power supply system, and setting of the diesel generator operating hours. The results showed that the optimum configuration was achieved using loads of resort, 24 kWp of PV, 288 kWh of BESS, load-following (LF) as dispatch controller, and 25 kVa of DG. Moreover, the proposed microgrid system produced 12% excess energy, 36% renewable fraction (RF), 13.25 tons reduction in CO2 emissions per year, $0.28 LCOE per kWh, $250,478 NPC, and a benefit-cost ratio (BCR) of 0.89. It also had a potential energy efficiency savings of 55.56% and a cost efficiency of 20.95% compared to existing system configurations. In conclusion, the study showed that the addition of DG to microgrid systems in 3T areas was more optimal than using only PV and batteries. An effective operating schedule for the DG was also necessary to improve RF and reduce expenses. Furthermore, other energy storage devices considered less expensive than batteries could be introduced to improve the economics of microgrid systems in the 3T region.