Claim Missing Document
Check
Articles

Found 14 Documents
Search

Implementasi Manajemen Bandwidth Simple Queue Sebagai Optimalisasi Layanan Jaringan Internet Warga Menggunakan Metode NDLC Miftahur Rahman; Moh. Dasuki; Hardian Oktavianto
Computer Science and Information Technology Vol 5 No 1 (2024): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v5i1.6899

Abstract

Krajan Hamlet, one of the areas in Jember Regency, has built an RT-RW Net network which aims to make it easier for the community or residents there to use the internet network for education, work and so on at relatively low costs. However, there is a problem, namely that using the internet network often causes buffering and even the network goes down if used simultaneously because the bandwidth is not limited to each user or client. The solution is to carry out simple queue bandwidth management. The completion steps in this research use the Network Development Life Cycle (NDLC) method. Resulting in research that the simple queue bandwidth management that has been carried out can be applied to the RT/RW Net network infrastructure that has been built, it was proven that when conducting bandwidth testing there was no bandwidth that exceeded the maximum limit that had been determined, namely the 20 Mbps bandwidth provided by the ISP divided into 5 Mbps for the Admin and for each client, they get a bandwidth of 3 Mbps, and when testing the network quality based on QoS calculations it can be categorized as good.
Rancang Bangun Aplikasi Smart Kids English Berbasis Mobile Dasuki, Moh; Abdurrahman, Ginanjar
INFORMAL: Informatics Journal Vol 8 No 3 (2023): Informatics Journal (INFORMAL)
Publisher : Faculty of Computer Science, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/isj.v8i3.38420

Abstract

Smart Kids English is a mobile-based learning media application that aims to help teachers and parents accompany children in learning English with different experiences by utilizing technology. The use of learning software is considered more effective because basically children use gadgets more often in their daily activities. Using learning software on gadget devices can also minimize the use of gadgets for unimportant applications such as playing games. The System Development Life Cycle in this research uses the Waterfall method, this method is used by many software developers. This research produces the Smart Kids English application with several basic features such as: pronunciation which is equipped with attractive images. Smart Kids English is equipped with a writing feature to train children in writing English. Smart Kids English is equipped with an animal sounds feature to increase children's insight into recognizing animal sounds in the environment around us. Smart Kids English is also equipped with a practice menu, the aim of which is to sharpen children's memory in remembering the material they have studied.
Optimasi Metode Certainty Factor Menggunakan Rank Order Centroid Pada Sistem Pakar Pendeteksi Turnover Intention Berbasis WEB Muhammad Maulana Akbar; Moh. Dasuki; Miftahur Rahman
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.9869

Abstract

Turnover intention, or the tendency of employees to resign, poses a significant challenge for companies—especially when dealing with Generation Z, who tend to have lower job commitment and are more likely to switch jobs. This study aims to develop a web-based expert system to detect the level of employee turnover intention by integrating the Certainty Factor (CF) and Rank Order Centroid (ROC) methods. The CF method is used to handle uncertainty in questionnaire assessments, while ROC is implemented to optimize the weights among aspects, namely Thinking of Quitting, Intention to Search for Alternatives, and Intention to Quit. The system is built based on 36 questionnaire statements and tested on 34 respondents. The results show that the system provides more proportional and realistic interpretations compared to the non-optimized approach. Accuracy testing indicates that 27 out of 34 system results match manual assessments, yielding an accuracy rate of 79.41%. These findings suggest that the system performs reliably and can serve as a practical tool for the early detection of turnover intention in the workplace.
Klasifikasi Sentimen Positif dan Negatif Ulasan Aplikasi GetContact Dengan Algoritma Naïve Bayes Putri Nur Apriliyanti; Moh. Dasuki; Rahman, Miftahur
JUSTIFY : Jurnal Sistem Informasi Ibrahimy Vol. 4 No. 2 (2026): JUSTIFY : Jurnal Sistem Informasi Ibrahimy
Publisher : Fakultas Sains dan Teknologi, Universitas Ibrahimy

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35316/justify.v4i2.9133

Abstract

Perkembangan teknologi informasi yang pesat telah mendorong meningkatnya interaksi pengguna dengan aplikasi digital, salah satunya melalui ulasan di platform Google Play Store. Ulasan pengguna terhadap aplikasi dapat mencerminkan kepuasan atau ketidakpuasan, yang bermanfaat bagi pengembang untuk evaluasi dan peningkatan layanan. Penelitian ini bertujuan untuk mengklasifikasikan sentimen positif dan negatif pada ulasan pengguna aplikasi GetContact dengan menerapkan algoritma Naïve Bayes. Data yang digunakan berupa 1000 ulasan berbahasa Indonesia yang dikumpulkan melalui teknik web scraping, kemudian diberi label oleh ahli bahasa. Tahapan penelitian meliputi preprocessing data seperti cleaning, tokenizing, case folding, stopword removal, punctuation removal, dan stemming. Setelah itu, dilakukan pembobotan fitur menggunakan metode Term Frequency-Inverse Document Frequency (TF-IDF), dilanjutkan dengan klasifikasi menggunakan Multinomial Naïve Bayes. Evaluasi performa model dilakukan dengan metrik akurasi, presisi, recall, dan f1-score. Hasil klasifikasi menunjukkan bahwa algoritma Naïve Bayes mampu mengklasifikasikan sentimen dengan tingkat akurasi sebesar 87%, presisi 0,87, recall 0,89, dan f1-score 0,88. Penelitian ini membuktikan bahwa Naïve Bayes merupakan algoritma yang efektif dan efisien dalam menganalisis sentimen ulasan aplikasi berbahasa Indonesia, serta dapat dijadikan referensi untuk pengembangan sistem analisis opini di masa depan.