Claim Missing Document
Check
Articles

Found 5 Documents
Search

Pola Aliran Dua Fase Gas - Fluida Non Newtonian Melalui Belokan Pipa Kusumaningsih, Haslinda; Hamidi, Nurkholis; Sabila, Adriazka Fasa
Rekayasa Mesin Vol 10, No 3 (2019)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jrm.2019.010.03.12

Abstract

Two-phase flow applications can be used in chemical reactors, fuel cell and a cooler of electronic devices. Nowadays, the study on multiphase flow is concern with the gas-non Newtonian liquids flow. Since, non-Newtonian liquids commonly used in both industrial and medical applications such as blood flow, polymer and chemical solutions. The viscosity of a non-Newtonian liquid cannot be described by Newton?s law viscosity. The viscosity will affect flow behavior in pipes depends on the rheology of the fluid. The purpose of this study is to further investigate the flow pattern characteristic of gas-Newtonian/non-Newtonian liquid two-phase flows in a normal channel. Ultrapure water, polyacrylamide aqueous solutions (PAM) were used as test fluids, while argon gas as the test gas. Liquid and gas were introduced in T-junction, which placed on the upstream of the test section. In this study, the polyacrylamide concentration was variated on 0.1% wt and 0.4% wt. Moreover, the flow rate of liquids tested were variated on 0.1167 m3/s, 0.183 m3/s, 0.25 m3/s; and 0.283 m3/s. Therefore, the gas tested was variated on 0.083 m3/s, 0.167 m3/s, and 0.25 m3/s. The circular channel and bend pipe were used in this study, which has hydraulic diameter of 25.4 mm. The high-speed video camera was used to record the flow patterns in the bend as the test section. The flow pattern, bubble length, bubble velocity and void fraction were determined by analyzing the video image of the flows. Slug and plug flow patterns mostly appear in this study for each variation of liquids tested. Increasing gas superficial velocity induced the longer bubble. Furthermore, because of the higher viscosity of the non-Newtonian liquid,  the bubble nose of gas-non Newtonian liquid two-phase flow becomes sharper than the bubble nose of gas-Newtonian liquid two-phase flow. 
Pengaruh Tegangan dan Waktu pada Proses Elektropolishing terhadap Surface Roghness Material Stainless Steel AISI 316L Widodo, Teguh Dwi; Raharjo, Rudianto; Kusumaningsih, Haslinda; Bintarto, Redi; Siswoyo, Redi Cipto; Sasongko, Mega Nur
Jurnal Rekayasa Mesin Vol 10, No 3 (2019)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jrm.2019.010.03.11

Abstract

The purpose of this work is to reveal the surface roughness and topography of AISI 316L stainless steel due to electropolishing processes. In this paper, AISI 316L was electropolished in various times of immersion and various voltage of the processes. The mechanism of electropolishing is eroding the surface of the substrate by controlling the electron excitation process. The electropolishing processes were carried out at 4, 5, and 6 minutes also in three different voltage 4, 6, and 8 volts. The results show that the surface roughness decrease as the treatment time and also as an increase in voltage.
Pengaruh Variasi Temperatur Reaktor terhadap Hasil Produk Pirolisis Eceng Gondok Secara Ex-Situ dengan Katalis Bentonit dan Penambahan Uap Air Hamidi, Nurkholis; Firmansyah, Anggi; Kusumaningsih, Haslinda
Jurnal Rekayasa Mesin Vol 11, No 3 (2020)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jrm.2020.011.03.23

Abstract

The water hyacinth has high growth rates that can lead to various environmental problems and the production of large amounts of waste biomass. However, it can be a source of lignocellulosic biomass for the production of bio-oil.  This study aims to determine the effect of temperature variation on the pyrolysis process of water hyacinth ex-situ with bentonite catalyst and the addition of water vapor. Temperature variations used are 450°C, 550°C, and 650°C. The pyrolysis process uses 300 grams of water hyacinth and is carried out for 1 hour. The results showed that increasing pyrolysis temperature reduced the char and bio-oil products, but increased the product of gas. Pyrolysis at 450°C produces a lot of bio-oil, while at the temperature of 650°C tends to produce gas products. Also, increasing the pyrolisis temperature results in a higher density of bio-oil. Gas chromatograph testing was carried out to determine the content of organic compounds found in bio-oil. Hydrocarbons are obtained which increase with increasing temperature. The highest percentage of the content of organic compounds is in oxygen compounds. Components of alcohol, phenols, ketones, aldehydes are functional compounds found in the content of bio-oil. Acid compounds are also contained in bio-oil from the results of pyrolysis of water hyacinth.
Studi Eksperimental Pengaruh Convective Heat Transfer terhadap Pressure Drop pada Aliran Dua Fase Gas-Cair Fluida Newtonian dan non-Newtonian dalam Square Microchannel Al Huda, Luqman; Kusumaningsih, Haslinda; Deendarlianto, Deendarlianto; Indarto, Indarto
Journal of Mechanical Design and Testing Vol 5, No 2 (2023): Articles
Publisher : Department of Mechanical and Industrial Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jmdt.73376

Abstract

Penelitian terkait dua fase gas-cair dalam saluran mikro telah banyak dilakukan. Namun, keterlibatan fluida non-newtonian serta kalor dalam aliran dua fase suatu saluran mikro masih terbatas, terutama pemecahan masalah pada pendinginan perangkat mikro. Permintaan terhadap efisiensi aliran fluida dua fase dalam mengikat kalor menjadi parameter penting dalam keberhasilan sistem pendinginan. Tujuan penelitian ini membandingkan beda tekanan antara fluida newtonian dan non-newtonian berdasarkan perbedaan viskositas pada aliran dua fase. Penelitian juga menambahkan perlakuan kalor konveksi dan mengamati pada dua area, yaitu sebelum (upstream) dan sesudah (downstream) terdampak kalor. Jenis fluida cair newtonian yang digunakan yaitu aquadest dan fluida non-newtonian yaitu Carboxymethil Cellulose (CMC wt 0,4%), sedangkan fluida gas yang digunakan adalah nitrogen. Dimensi diameter hidrolis saluran sebesar 0,8 mm. Kecepatan superfisial cairan divariasikan mulai 0,1 m/s hingga 1 m/s, sedangkan kecepatan superfisial gas divariasikan mulai 0,26 m/s hingga 7,81 m/s. High speed video camera digunakan untuk merekam pola aliran, panjang dan kecepatan gelembung terbentuk. Hasil penelitian aliran nitrogen-aquadest membentuk pola aliran bubbly, slug, churn dan slug-annular, sedangkan nitrogen-CMC wt 0,4% membentuk slug, churn dan slug-annular. Perbedaan viskositas aquadest memberikan beda tekanan lebih rendah daripada CMC wt 0,4%. Penambahan kalor mampu memberikan beda tekanan yang lebih rendah diiringi dengan penurunan viskositas cairan.
The Effect of Sand Blasting on Shear Stress of Fiberglass - Shorea spp. Composite Widodo, Teguh Dwi; Raharjo, Rudianto; Risonarta, Victor Yuardi; Bintarto, Redi; Kusumaningsih, Haslinda; Saputra, Muhamad Hendra
International Journal of Mechanical Engineering Technologies and Applications Vol. 1 No. 1 (2020)
Publisher : Mechanical Engineering Department, Engineering Faculty, Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/mechta.2020.001.01.1

Abstract

A coating is widely applied to protect base material during contact with surrounding. One important application in engineering is to protect a boat hull. The coating is applied to boat hull to prevent a decrease of mechanical properties of base materials particularly with corrosive seawater. Composite coating is applied since the composite coating provides better protection compared to paint coating. Additionally, sandblasting prior to composite coating is worked out to improve the mechanical properties of the coating. This work investigated the influence of the projection angle of the sandblasting process on the shear strength of the coated surface. The projection angle of sandblasting was varied from 30 to 90 °. The result shows that a higher projection angle decreases the strain strength of the coating surface. The experiment work showed that the shear strength of 30°, 45 °, 60 °, and 90°projection angle are 1.02, 0.66, 0.38, and 0.24 MPa, respectively.