Rangkuti, Aidawayati
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Metode Pembelajaran Matematika dengan Permainan di Kotamadya Pare-pare Erawaty, Nur; Amir, Amir Kamal; Aris, Naimah; Kasbawati, Kasbawati; Sahriman, Sitti; Rangkuti, Aidawayati
JATI EMAS (Jurnal Aplikasi Teknik dan Pengabdian Masyarakat) Vol 2 No 2 (2018): JATI EMAS (Jurnal Aplikasi Teknik dan Pengabdian Masyarakat)
Publisher : Dewan Pimpinan Daerah (DPD) Forum Dosen Indonesia JATIM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (187.302 KB) | DOI: 10.36339/je.v2i2.162

Abstract

The achievement of Mathematics contestants from the City of Pare-pare is very concerning. In February 2017elementary school mathematics competition was held. Of the 82 participants from Pare-pare, there were only 13 studentswho got scores above zero. Other students get zero or less than zero (negative). In March 2018, from 17 MathematicsEvent XVIII 2018 participants from Pare-pare, only 5 students had got positive scores. There was a decrease in interestand achievement in Mathematics in elementary school students in Pare-pare. The solution offered was training forMathematics Elementary School teachers by emphasizing learning method with playing. This is intended so that childrenhave enjoyed Mathematics from the beginning so that in the future the interest in learning Mathematics will be evengreater
Perbandingan ANN, Random Forest, dan XGBoost dalam Klasifikasi Antibiotik dengan Penerapan metode Sampling Saputra Rusdi, Edy; RUSDI, EDY SAPUTRA; Siddik, A. Muh. Amil; Aris, Naimah; Ardiansyah Asrifah, Muhammad; Syahrir, Nur Hilal A.; Rangkuti, Aidawayati; Rusdi, Wahyudi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 4: Agustus 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.124

Abstract

Banyak obat potensial telah ditemukan dari produk alami laut (Marine Natural Product). Hal ini menunjukkan bahwa senyawa laut merupakan sumber penting dalam pengembangan dan penemuan obat. Meskipun banyak senyawa laut yang menunjukkan aktivitas biologis tertentu, hanya sedikit yang tercatat sebagai senyawa antibakteri. Oleh karena itu, menemukan senyawa yang berpotensi sebagai senyawa antibakteri dari organisme laut masih menjadi tantangan. Tujuan dari penelitian ini adalah untuk memanfaatkan pendekatan komputasi untuk menemukan senyawa antibakteri dari produk alami laut yang berpotensi menjadi obat. Penelitian ini berfokus pada penggunaan model Artificial Neural Network (ANN), Random Forest, dan XGBoost untuk melakukan klasifikasi berdasarkan kemiripan kimiawi antara senyawa produk alami laut di Indonesia dengan senyawa antibakteri. Untuk mengatasi ketidakseimbangan data, digunakan teknik resampling berupa SMOTE dan undersampling (US). Hasil penelitian menunjukkan bahwa akurasi XGBoost + SMOTE memiliki nilai yang paling tinggi, yaitu 98.89%, mengungguli model ANN 97.57%, Random Forest  (RF) 97.06%, serta model dengan resampling lain seperti ANN+SMOTE 98.67% dan RF + SMOTE 98.59%. Sementara itu, penerapan teknik undersampling menyebabkan penurunan akurasi secara signifikan, di mana XGBoost + US, RF + US, dan ANN + US masing-masing hanya mencapai 91.12%, 91.59%, dan 87.85%. Dari 73 senyawa biota laut, hanya senyawa yang memiliki CID 101767277 yang diprediksi sebagai senyawa yang potensial sebagai antibakteri.   Abstract Many potential drugs have been discovered from marine natural products. This suggests that marine compounds are essential in drug development and discovery. Although many marine compounds exhibit certain biological activities, only a few have been recorded as antibacterial compounds. Therefore, finding compounds with potential as antibacterial compounds from marine organisms remains a challenge. This paper aims to utilize computational approaches to discover antibacterial compounds from marine natural products that have the potential to become drugs. This research focuses on the use of Artificial Neural Network (ANN), Random Forest (RF), and XGBoost models to perform classification based on chemical similarity between compounds of marine natural products in Indonesia and antibacterial compounds. To overcome data imbalance, resampling techniques such as SMOTE and undersampling (US) were used. The results showed that the accuracy of XGBoost + SMOTE has the highest value, which is 98.89%, outperforming the ANN model 97.57%, Random Forest (RF) 97.06%, as well as models with other resampling such as ANN+SMOTE 98.67% and RF + SMOTE 98.59%. Meanwhile, the application of undersampling techniques caused a significant decrease in accuracy, where XGBoost + US, RF + US, and ANN + US only reached 91.12%, 91.59%, and 87.85%, respectively. Of the 73 marine biota compounds, only compounds that have CID 101767277 are predicted as potential antibacterial compounds.